Mechanics and Relativity: R3

October 31st, 2022, Aletta Jacobshal Duration: 120 mins

Before you start, read the following:

- There are 3 problems, for a total of 50 points.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate. Draw your spacetime diagrams on the provided hyperbolic paper.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

	Points
Problem 1:	20
Problem 2:	20
Problem 3:	10
Total:	50
GRADE $(1 + \# \text{Total}/(50/9))$	

Useful equations:

$$\Delta s^2 = \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$
$$\Delta t > \Delta s > \Delta \tau$$

The Lorentz transformation equations with $\gamma \equiv (1 - \beta^2)^{-1/2}$:

$$t' = \gamma(t - \beta x),$$

$$x' = \gamma(x - \beta t),$$

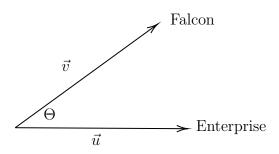
$$y' = y,$$

$$z' = z.$$

The relativistic Doppler shift formula and Esintein velocity transformations:

$$\frac{\lambda_R}{\lambda_E} = \sqrt{\frac{1+v_x}{1-v_x}} \quad v_x' = \frac{v_x - \beta}{1-\beta v_x} \quad v_{y,z}' = \gamma^{-1} \frac{v_{y,z}}{1-\beta v_x} \,.$$

Possibly relevant equations:


$$F = G \frac{Mm}{r^2};$$
 $F = ma;$ $PV \propto k_b T;$ $F = \frac{dp}{dt}$

Possibly relevant numbers:

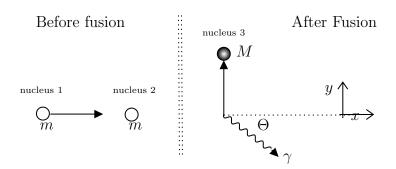
$$L_{\rm sun} = 3.83 \times 10^{24} \text{ kg m}^2 \text{ s}^{-3}$$
 $c = 299792458 \text{ m/s}$ $1 \text{ eV} = 1.602176565 \times 10^{-19} \text{ J}$

Question 1: The Enterprise and the Falcon (20 pts)

Consider two spaceships, the Enterprise and the Falcon, moving with velocities \vec{u} and \vec{v} as shown in the figure below. The velocity vectors make an angle Θ . The aim is to obtain the speed $|\vec{V}| = V$ of the other spaceship (Falcon) as measured by the Enterprise in terms of Θ , $|\vec{v}| = v$ and $|\vec{u}| = u$ (note that the answer is relative: the speed of the Falcon as observed from the Enterprise is the same as the speed of the Enterprise as observed from the Falcon). Consider a frame where we measure \vec{u} and \vec{v} velocities (we will refer to this as the rest frame). Take the horizontal direction to align with the x-axis and the vertical direction with the y-axis.

(a)	(2 pts) Write down the velocity components of the two spaceships in the frame at rest.
	(2 pts) In the rest frame of the Enterprise, what are the velocity components of the Enterprise and the Falcon?

	$V = \sqrt{1 \cdot }$	$-\frac{(1-u^2)(1-v^2)}{(1-uv\cos\Theta)^2}$	- ·	(1


(d) (2 pts) Show what happens to Eq. (1) when $\Theta = 0$? Explain if this answer makes sense.
(c	3 pts) In the lecture we have defined a four-momentum $\mathbf{p} = (E, \vec{p}) = (\gamma m, \gamma m \vec{v})$. Similarl as explained in the lecture) we can define four-velocity $\mathbf{v} = (\gamma, \gamma \vec{v})$. In addition, in the lectural lips and the lecture, we defined the inner product of two four-vectors which is similar to the sual Euclidean inner product, except that its signature is now Minkowski:
	$\mathbf{A} \cdot \mathbf{B} \equiv A_0 B_0 - A_1 B_1 - A_2 B_2 - A_3 B_3, \tag{2}$
p fr	or two four-vectors $\mathbf{A} = (A_0, A_1, A_2, A_3)$ and $\mathbf{B} = (B_0, B_1, B_2, B_3)$. Show that the inner product is invariant under Lorentz transformations, i.e. $\mathbf{A} \cdot \mathbf{B} = \mathbf{A}' \cdot \mathbf{B}'$. Assume the other arms is moving in the $+x$ directions. HINT: time (space) components of the four-vector ransform as $t(x)$ under Lorentz transformations.

(f)	(1 pt) Write down the four-velocity u and v of the two spaceships in the rest frame (as defined above 1 (a)). Use notation where $\gamma_u = (1 - u^2)^{-1/2}$ and similarly for v .						
(g)	direction and the Enterprise is at rest. We can thus write $\mathbf{u}' = (1,0)$ and $\mathbf{v}' = (\gamma_{v'}, \gamma_{v'}v')$. We have dropped the y' and z' components for brevity. In this other frame, the Falcon is moving with speed v' . Using the invariance of the inner product to show that						
	$\gamma_{v'} = \gamma_u \gamma_v (1 - uv \cos \Theta). \tag{3}$						
(h)	(3 pts) Find a solution for v' and show that it is identical to the solution for V in Eq. (1).						

Name: Student Number:

Question 2: Nuclear Fusion (20 pts)

Nuclear fusion is the process in which two nuclei are merged together to produce a third nucleus + energy (photon γ , not to be confused with the Lorentz factor). The drawing below suggests such a fusion process. One nucleus of mass m, moving at some speed v to the right, hits a stationary nucleus of the same mass m. The fusion produces one nucleus of mass M and a photon with some energy E_{γ} . While the nucleus is moving up (along the y axis), the photon moves down with some undetermined angle Θ with respect to the horizontal axis (x axis).

(a) (2 pts) Write down the four-momenta of each object in the diagram. Only use the relativistic energies and momenta to describe the total four momenta of the three particles and the photon. You can ignore/drop the z direction.

(b)	(4 pts) By equating the four-momenta show that the energy before the fusion is related to
	the angle Θ , the (3) momentum of the incoming nucleus 1, p_1 , and the mass, M , of the new
	nucleus 3 as

$$E_1 + E_2 = \sqrt{p_1^2(1 + \tan^2 \Theta)} + \sqrt{p_1^2 \tan^2 \Theta + M^2},$$
(4)

where E_1 and E_2 are the energies of the two nuclei before the fusion.

,) W		C +1

(c) (5 pts) Writing $E_1 + E_2 = E$ and realizing that the first term on the RHS is the energy of the photon E_{γ} , show that

$$E_{\gamma} = \frac{E^2 + p_1^2 - M^2}{2E}. (5)$$

((d)) ((5	nts') Show	that	this	imp]	lies
١	u	, ,	U	Pus.		unau	oms	шир	rrco

$$M < \sqrt{2\gamma_1(1+\gamma_1)}m\tag{6}$$

for this to result in the production of a photon. Here γ_1 is the Lorentz factor associated with the incoming nucleus. Explain that this implies a photon is produced whenever M < 2m.

The state of the s		

Name: Student Number:

Question 3: Wien's Displacement Law, Doppler Shift and Guesstimation (10 pts)

To very good approximation, the emission spectrum of a star resembles that of a blackbody. The intensity of a blackbody varies with the wavelength of the emitted photons. The wavelength at which the most photons are emitted is called peak wavelength λ_{peak} . This peak wavelength is inversely related to the surface temperature of the star T via Wien's displacement law:

$$\lambda_{\text{peak}} = C \frac{hc}{k_{\text{B}}T} \tag{7}$$

Here, h is Planck's constant, c the speed of light and k_B Boltzmann's constant. C is some dimensionless constant of $\mathcal{O}(1)$ (order 1). Since the majority of photons emitted by the star have wavelength λ_{peak} , this wavelength determines the gross color of the star.

(a)	(1 pt) The star EROS NX11 moves away from earth with a velocity $\beta \ll 1$. Its spectrum	is
	measured on earth. Show that the received peak wavelength $\lambda_{\text{peak,R}}$ is related to the emitted	ed
	peak wavelength $\lambda_{\text{peak,E}}$ as:	

$$\lambda_{\text{peak},R} = (1+\beta)\lambda_{\text{peak},E} \tag{8}$$

Hint: Use the Binomial approximation $(1+x)^a = 1 + ax$ to rewrite the fraction $1/(1-\beta)$.

(b) (1 pt) EROS NX11 has a surface temperature of 9000 K and its peak wavelength is 322 nm. It moves away from earth at 10% of the speed of light. What is the peak wavelength as measured on earth?

1			

Üse	pts) The number of stars in the observable universe is estimated to be of the order 1 guesstimation to find out if there are more stars in the universe than there are grain d on all the world's beaches. Some ingredients to help you along the way:
•	Guesstimate the total area of land on earth
•	Assume land can be divided into similar size continents
•	Guesstimate the length of shoreline
•	Guesstimate the size of a grain of sand

r			
Į			

Student Number:

Name: