
Mathematical Physics 2025
Exam 18 June
08:30 - 10:30

Instructions:

• Write your student number on each sheet you submit.

• You are allowed to bring one A4 cheat sheet (double-sided).

• No calculators, textbooks, or digital devices are allowed.

• Write clearly and legibly. Show all necessary steps in your calculations and clearly
state any assumptions or theorems used.

• If you use a convention that is not defined in the lectures or textbooks, you must
explain it clearly. Otherwise, points will be deducted.

• There are four problems in total. The total score is 100 points. This exam counts
for 70% of your final grade.

Useful Identities and Equations

sin(𝑎 ± 𝑏) = sin 𝑎 cos 𝑏 ± cos 𝑎 sin 𝑏
cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏
sin2 𝑎 + cos2 𝑎 = 1

∫

∞

−∞
𝑒−𝑎𝑥2+𝑏𝑥+𝑐 𝑑𝑥 =

√

𝜋
𝑎
𝑒
𝑏2
4𝑎+𝑐, for 𝑎 > 0

𝛿(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥 𝑑𝑘

𝜕𝑢
𝜕𝑡

= 𝑐2 𝜕
2𝑢
𝜕𝑥2

, 𝜕2𝑢
𝜕𝑡2

= 𝑐2 𝜕
2𝑢
𝜕𝑥2

, 𝑑2𝑢
𝑑𝑥2

= 0 or ∇2𝑢 = 0 (in higher dimensions)

Please submit your exam at the front desk according to your group, as determined
by your student number in the table on the next page. Upon submission, you will find a
list to sign.
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Group Student Number Range

Group 1 Student Number < 5450000
Group 2 5450000 < Student Number < 5650000
Group 3 5659035 < Student Number < 5800000
Group 4 5801000 < Student Number < 5876000
Group 5 5876050 < Student Number < 5933000
Group 6 5934000 < Student Number < 5980000
Group 7 5990000 < Student Number < 6038000
Group 8 6039000 < Student Number < 6087000
Group 9 6087500 < Student Number < 6117200
Group 10 6117240 < Student Number
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Problem 1: (11 pts + 10 pts)

(a) Using an appropriate test, determine whether the series is convergent or divergent.
∞
∑

𝑛=1

(−1)𝑛−1

3 + 5𝑛

(b) Find the radius and interval of convergence of the following power series.

∞
∑

𝑛=1

(𝑥 − 2)𝑛

𝑛𝑛

Problem 1:

(a) Consider the series
∞
∑

𝑛=1

(−1)𝑛−1

3 + 5𝑛
.

We apply the Alternating Series Test, which states that the series
∑

(−1)𝑛−1𝑏𝑛
converges if the sequence (𝑏𝑛) satisfies the following conditions:

(i) Positivity: The terms 𝑏𝑛 = 1
3+5𝑛

are positive for all 𝑛 ≥ 1. (1 pt for general
statement, 2 pts for actually checking it)

(ii) The sequence (𝑏𝑛) is decreasing:

𝑏𝑛+1 =
1

3 + 5(𝑛 + 1)
= 1

8 + 5𝑛
< 1

3 + 5𝑛
= 𝑏𝑛.

(1 pt for general statement, 2 pts for actually checking it)

(iii) Limit to zero:

lim
𝑛→∞

𝑏𝑛 = lim
𝑛→∞

1
3 + 5𝑛

= 0.

(1 pt for general statement, 2 pts for actually checking it)

Therefore, by the Alternating Series Test, the series converges.

All conditions hold since 𝑏𝑛 > 0, 𝑏𝑛+1 < 𝑏𝑛, and lim𝑛→∞
1

3+5𝑛
= 0. Therefore, the

series converges. (2 pts)

(b) Using the root test(2 pts),

𝐿 = lim
𝑛→∞

𝑛

√

|

|

|

|

(𝑥 − 2)𝑛
𝑛𝑛

|

|

|

|

= lim
𝑛→∞

|𝑥 − 2|
𝑛

= 0. (4𝑝𝑡𝑠)

Since 𝐿 = 0 < 1 for all 𝑥, the radius of convergence is

𝑅 = ∞, (2𝑝𝑡𝑠)

and the interval of convergence is

(−∞,∞). (2𝑝𝑡𝑠)
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Problem 2: (14 pts + 10 pts)
Consider the second-order linear differential equation:

𝑦′′ − 𝑥𝑦′ − 𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 0

(a) Assume a power series solution around 𝑥0 = 0. Find the recurrence relation for the
coefficients 𝑎𝑛.

(b) Using the initial conditions, compute the first four non-zero terms of the power
series. Based on this pattern, determine whether the solution is an even function,
odd function, or neither. Justify your answer.

Problem 2:

(a) Assume

𝑦 =
∞
∑

𝑛=0
𝑎𝑛𝑥

𝑛, 𝑦′ =
∞
∑

𝑛=1
𝑛𝑎𝑛𝑥

𝑛−1, 𝑦′′ =
∞
∑

𝑛=2
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2. (3𝑝𝑡𝑠)

Substitute into the equation:
∞
∑

𝑛=2
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − 𝑥

∞
∑

𝑛=1
𝑛𝑎𝑛𝑥

𝑛−1 −
∞
∑

𝑛=0
𝑎𝑛𝑥

𝑛 = 0,

which simplifies to
∞
∑

𝑛=2
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 −

∞
∑

𝑛=1
𝑛𝑎𝑛𝑥

𝑛 −
∞
∑

𝑛=0
𝑎𝑛𝑥

𝑛 = 0.(3𝑝𝑡𝑠)

Re-index the first sum with 𝑘 = 𝑛 − 2:
∞
∑

𝑘=0
(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2𝑥𝑘 −

∞
∑

𝑛=1
𝑛𝑎𝑛𝑥

𝑛 −
∞
∑

𝑛=0
𝑎𝑛𝑥

𝑛 = 0.

Rewrite the sums as
∞
∑

𝑘=0
(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2𝑥𝑘 −

∞
∑

𝑘=1
𝑘𝑎𝑘𝑥

𝑘 −
∞
∑

𝑘=0
𝑎𝑘𝑥

𝑘 = 0.

Separate the 𝑘 = 0 term :

(𝑘 = 0) ∶ (2)(1)𝑎2𝑥0 − 𝑎0𝑥0 = 2𝑎2 − 𝑎0.(2𝑝𝑡𝑠)

Then for 𝑘 ≥ 1,

(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2 − 𝑘𝑎𝑘 − 𝑎𝑘 = (𝑘 + 2)(𝑘 + 1)𝑎𝑘+2 − (𝑘 + 1)𝑎𝑘 = 0.(2𝑝𝑡𝑠)

Thus,
2𝑎2 − 𝑎0 = 0, (2𝑝𝑡𝑠)

and for 𝑘 ≥ 1,
𝑎𝑘+2 =

(𝑘 + 1)
(𝑘 + 2)(𝑘 + 1)

𝑎𝑘 =
𝑎𝑘
𝑘 + 2

.(2𝑝𝑡𝑠)
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(b) Using initial conditions 𝑦(0) = 𝑎0 = 1 and 𝑦′(0) = 𝑎1 = 0 (4 pts):

𝑎2 =
𝑎0
2

= 1
2
, 𝑎3 =

𝑎1
3

= 0, 𝑎4 =
𝑎2
4

= 1
8
, 𝑎5 =

𝑎3
5

= 0.

The first four nonzero terms are

𝑦 = 1 + 𝑥2

2
+ 𝑥4

8
+ 𝑥6

48
⋯ .(4𝑝𝑡𝑠)

Since all odd coefficients 𝑎1, 𝑎3, 𝑎5,… are zero, the solution is an even function (2
pts) .
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Problem 3: (6 pts + 16 pts)

Let 𝑓 (𝑡) = 1 + sin2 𝑡.

(a) Determine the fundamental period of the function 𝑓 (𝑡). Determine whether 𝑓 (𝑡) is
an even, odd, or neither function. Justify your answer.

(b) Find the Fourier coefficients and write down the Fourier series of 𝑓 (𝑡).

Problem 3:

(a) Since sin 𝑡 has period 2𝜋, and sin2 𝑡 = 1−cos 2𝑡
2

has period 𝜋, the fundamental period
of 𝑓 (𝑡) is

𝑇 = 𝜋.(4𝑝𝑡𝑠)

To check parity:
𝑓 (−𝑡) = 1 + sin2(−𝑡) = 1 + sin2 𝑡 = 𝑓 (𝑡),

so 𝑓 (𝑡) is an even function. (2 pts)

If a student gets the period wrong but correctly computes the Fourier expansion in
part (b) based on that incorrect period, the grading should be adjusted to avoid
double penalization.

(b) Using the identity

sin2 𝑡 = 1 − cos 2𝑡
2

,

we rewrite
𝑓 (𝑡) = 1 + 1 − cos 2𝑡

2
= 3

2
− 1

2
cos 2𝑡.(2𝑝𝑡𝑠)

The Fourier series of 𝑓 (𝑡) with fundamental period 𝜋 is

𝑓 (𝑡) = 𝑎0 +
∞
∑

𝑛=1
𝑎𝑛 cos

2𝜋𝑛𝑡
𝜋

+
∞
∑

𝑛=1
𝑏𝑛 sin

2𝜋𝑛𝑡
𝜋

.(4𝑝𝑡𝑠)

Because 𝑓 (𝑡) is even, all 𝑏𝑛 = 0 (2 pts).

From the expression above, we identify

𝑎0 =
3
2
(2𝑝𝑡𝑠), 𝑎1 = −1

2
(2𝑝𝑡𝑠), 𝑎𝑛 = 0 for 𝑛 ≠ 0, 1(2𝑝𝑡𝑠).

Therefore, the Fourier series is

𝑓 (𝑡) = 3
2
− 1

2
cos 2𝑡.(2𝑝𝑡𝑠)
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Problem 4: (8 pts + 10 pts + 5 pts)
The time-dependent Schrödinger equation for a free quantum particle of mass 𝑚 in one
spatial dimension is given by

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)
𝜕𝑡

= − ℏ
2

2𝑚
𝜕2𝜓(𝑥, 𝑡)
𝜕𝑥2

where ℏ is a constant (the reduced Planck constant) Assume 𝜓(𝑥, 𝑡) is defined for all
𝑥 ∈ ℝ and for 𝑡 ≥ 0, and that 𝜓(𝑥, 𝑡) and its Fourier transform are well-behaved.

(a) Use the Fourier transform to convert the partial differential equation into an ordinary
differential equation in 𝜔-space, and solve for 𝜓̃(𝜔, 𝑡) in terms of 𝜓̃(𝜔, 0) where
𝜓̃(𝜔, 𝑡) denotes the Fourier transform of 𝜓(𝑥, 𝑡).

(b) Obtain the solution 𝜓(𝑥, 𝑡) for the following initial condition: 𝜓(𝑥, 0) = 𝛿(𝑥 − 𝑥0).
Hint:

∫

∞

−∞
𝑓 (𝑥) 𝛿(𝑥 − 𝑎) 𝑑𝑥 = 𝑓 (𝑎).

(c) Now, consider the following two initial conditions:

𝜓1(𝑥, 0) = 𝑒−𝑎𝑥2 for all 𝑥 ∈ ℝ (Gaussian)

𝜓2(𝑥, 0) =

{

1, −𝐿 < 𝑥 < 𝐿
0, otherwise

(rectangular pulse)

Compare the high-frequency content of the Fourier transforms of the Gaussian and
the rectangular pulse. Which function contains more high-frequency content, and
why? How does this difference in frequency content affect the time evolution of
each wave shape? You do not need to perform any calculations—just provide a
qualitative explanation.

Problem 4:

(a) The Fourier transform of 𝜓(𝑥, 𝑡) is defined as

𝜓̃(𝜔, 𝑡) = 1
√

2𝜋 ∫

∞

−∞
𝜓(𝑥, 𝑡)𝑒−𝑖𝜔𝑥 𝑑𝑥.(2𝑝𝑡𝑠)

Applying the Fourier transform to the Schrödinger equation,

𝑖ℏ
𝜕𝜓̃(𝜔, 𝑡)
𝜕𝑡

= ℏ2𝜔2

2𝑚
𝜓̃(𝜔, 𝑡).(2𝑝𝑡𝑠)

by using


[

𝜕2𝜓(𝑥, 𝑡)
𝜕𝑥2

]

(𝜔) = (𝑖𝜔)2𝜓̃(𝜔, 𝑡) = −𝜔2𝜓̃(𝜔, 𝑡).(2𝑝𝑡𝑠)

This ordinary differential equation has the solution

𝜓̃(𝜔, 𝑡) = 𝜓̃(𝜔, 0) 𝑒−𝑖
ℏ𝜔2
2𝑚 𝑡.(2𝑝𝑡𝑠)
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(b) The Fourier transform of the initial condition 𝜓(𝑥, 0) = 𝛿(𝑥 − 𝑥0) is calculated as
follows:

𝜓̃(𝑘, 0) = 1
√

2𝜋 ∫

∞

−∞
𝛿(𝑥 − 𝑥0)𝑒−𝑖𝑘𝑥 𝑑𝑥.(2𝑝𝑡𝑠)

Using the hint, this evaluates to

𝜓̃(𝑘, 0) = 1
√

2𝜋
𝑒−𝑖𝑘𝑥0 .(2𝑝𝑡𝑠)

Therefore,
𝜓̃(𝑘, 𝑡) = 1

√

2𝜋
𝑒−𝑖𝑘𝑥0𝑒−𝑖

ℏ𝑘2
2𝑚 𝑡.(2𝑝𝑡𝑠)

The inverse Fourier transform gives the solution in position space:

𝜓(𝑥, 𝑡) = 1
√

2𝜋 ∫

∞

−∞
𝜓̃(𝑘, 𝑡)𝑒𝑖𝑘𝑥 𝑑𝑘 = 1

2𝜋 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝑥0)𝑒−𝑖

ℏ𝑘2
2𝑚 𝑡 𝑑𝑘.(2𝑝𝑡𝑠)

Evaluating the Gaussian integral yields the free particle propagator:

𝜓(𝑥, 𝑡) =
√

𝑚
2𝜋𝑖ℏ𝑡

exp
(

𝑖𝑚(𝑥 − 𝑥0)2

2ℏ𝑡

)

.(2𝑝𝑡𝑠)

(c) (2 points for stating that the pulse contains more high-frequency components, and
1 point for explaining that this is due to its sharp discontinuities.
2 points for explaining that the Gaussian wave packet spreads smoothly and largely
retains its shape over time, while the pulse—requiring many high-frequency modes
to represent its sharp edges—undergoes more significant shape changes as these
high-frequency components decay more rapidly.)
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