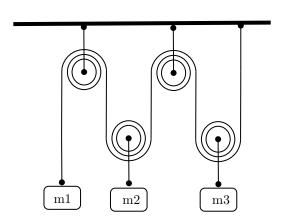
Name: Student Number:

Mechanics and Relativity: M1

December 1, 2023, Aletta Jacobshal Duration: 60 mins

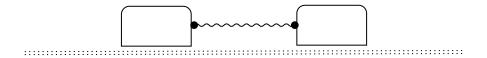
Before you start, read the following:


- There are 2 problems with subquestions, and you can earn 90 points in total (45 per problem). Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

Possibly relevant equations and values:

$$F = ma$$
, $E = mc^2$, $K = \frac{1}{2}mv^2$, $V = mgh$, $V = -\frac{1}{2}kx^2$, $g \approx 10m/s^2$. (1)

Question 1: A double Atwood machine


Consider an extended Atwood machine as indicated in the picture, with a single rope connecting three masses m_i . You can assume the rope is massless and does not stretch, and the pulleys are massless and have no friction.

(a)	(15 pts) Which ratios of the three masses are needed to achieve a static configuration?					
(b)	(15 pts) Which acceleration does m_1 have when all three masses are equal?					
(c)	(15 pt) Is the combination of potential energy and kinetic energy of the first mass m_1 conserved when it accelerates as in (b) (so with all masses equal)? Show how this follows from a calculation. (If you did not find an answer at (b), take the acceleration to be half of the gravitational one, i.e. $a = g/2$.) Explain in one or two sentences whether this combination of energy should be conserved.					

Question 2: Normal modes of two carts

Consider rails (of infinite extent) with two carts (of equal masses m) that are connected by a spring with spring constant k, see the picture.

(a) (15 pts) What are Newton's 2nd laws for the two carts, expressed in terms of their locations $x_{1,2}$? Give the explicit form of these differential equations for the first cart and for the second cart.

(b) (15 pts) Derive what are the normal modes (as linear combinations of the locations $x_{1,2}$ of the two carts) of this system and the differential equations governing their dynamics. Moreover, what is the most general solution of this system? Hint: when expressed in terms of normal modes, Newton's 2nd laws become two separate ODE's for the two combinations.

separate ODE's for the two combinations.