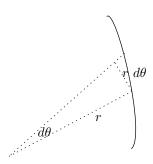
Name: Student Number:

Mechanics and Relativity: M2

December 17, 2024, Aletta Jacobshal Duration: 90 mins

Before you start, read the following:


- There are 3 problems with subquestions, and you can earn 90 points in total. Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

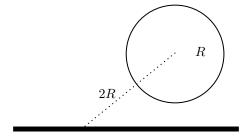
Possibly relevant equations and values:

$$F = ma, \quad \vec{L} = \vec{r} \times \vec{p}, \quad T = \frac{1}{2} I_z \omega^2, \quad \tau = I_z \alpha. \tag{1}$$

Question 1: Central and conservative forces

central? (No	explanations need	ded.)			
(104-) C-		<u></u>	f C-1.1 -f.41	D1 -1 M	(
		in the gravitational ational force conser			on (and neglect the rons needed.)

(c) (10 pts) Prove Kepler's second law which states that the area swept out by the Earth as it orbits the Sun is the same for equal infinitesimal time intervals (see figure). In your proof, you can use the conservation of angular momentum.


Question 2: Moment of inertia

(a) (10 pts) Calculate the moment of inertia of a stick of length D and mass m, where the axis of rotation is orthogonal to the stick and goes through its center of mass.

(b)	at the rim and where the axis of rotation is orthogonal to the plane of the ring and goes through its center of mass, is given by MR^2 . Calculate the moment of inertia around the same axis of rotation when a wheel is built by adding two spokes to this ring (thus making roughly this figure: Θ). The total mass will be $4M/3$ (or which M resides in the outer ring and $M/3$ in the spokes). (If you didn't get an answer at (a), use $\frac{5}{7}mD^2$.)
(c)	(10 pts) A Formula 1 maniac adds an additional eight spokes to the wheel (of the same material as before, thus doubling the total weight of the wheel). When rolling down from a hill (where you can ignore air resistance etc), which wheel will be faster? Assume that the wheels do not slip. Briefly explain your answer, e.g. in two sentences. (You should be able to argue this on physical grounds, independent of your answer at (b). No
	calculations necessary).

Question 3: Falling backwards - or not...

Consider a very skinny person with a massive bike wheel; all of the mass M is concentrated in (the rim of) the wheel with radius R, while the length of the person is 2R. The person is leaning backwards at an angle of 45 degrees, without initial velocity. The feet of the person cannot slip on the ground, and hence remain at the same location.

(a)	(10 pts) What is the torque exerted by gravity on this configuration?				
(b)	(10 pts) In the case where the wheel does not turn by itself (in other words, the person and wheel together behave as a single rigid body), what is the (initial) angular acceleration (in terms of e.g. M, g, R etc) of the person?				
(c)	(10 pts) By continuously speeding up the wheel seperately, the person can hover indefinitely at this diagonal position. What would the angular acceleration (in terms of e.g. M, g, R etc) of the wheel have to be to achieve this?				