Mechanics and Relativity: M3

January 22, 2024, Aletta Jacobshal Duration: 120 mins

Before you start, read the following:

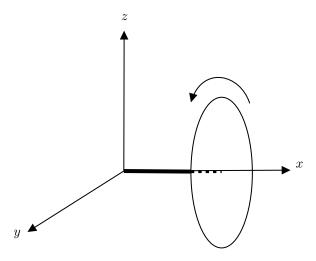
- There are 3 problems with subquestions, and you can earn 90 points in total. Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

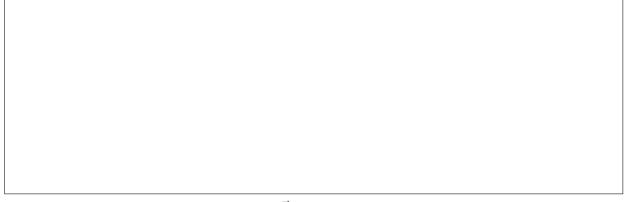
Possibly relevant equations:

$$\vec{F} = m\vec{a}\,, \quad \vec{L} = \vec{r} \times \vec{p}\,, \quad \vec{\tau} = \vec{r} \times \vec{F}\,, \quad \vec{F}_{\rm centr} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})\,, \quad \vec{F}_{\rm Cor} = -2m\vec{\omega} \times \vec{v}\,,$$

(a) (10 pts) Consider a ring standing up vertically, with mass M and radius R, which is so flat

and the trigonometric identities $\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta))$ and $\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$.


Question 1: Principal axes


hat it's effective owest point of the		cipal axes for	rotation arour	nd th

Question 2: Suspended bike wheel with spin and precession

Consider a bike wheel that is suspended in mid air on one of its sides, allowing it to spin and precess. Take all mass M to be at the rim of the wheel at radius R, such that its moment of inertia around the axis of the wheel is MR^2 . Take the distance from the center of mass to the suspension point to be x_0 . Finally, take the spinning direction to be clockwise as seen from the suspension point with angular frequency ω_3 . You can neglect friction.

(a) (15 pts) Using the torque and rate of change of angular momentum, derive the angular precession frequency Ω of the bike wheel, and its direction.

(b) (15 pts) The total angular momentum \vec{L} of any body is always composed of the angular momentum of the center of mass, $\vec{R} \times \vec{P}$, and the angular momentum around the center of mass, $\vec{L}_{\rm CM}$. In the above situation, what are the magnitudes of both components of angular momentum? Also, clearly indicate their directions in a drawing.

Question 3: Fictitious forces

Imagine you live somewhere on Earth at a latitude of 45 degrees, so exactly in between the North Pole and the equator. Take the Earth to be a perfect sphere with a radius of 6400 km and an angular speed of $\omega = 7 \cdot 10^{-5}$ 1/s. Consider a cloud above your house moving westwards

with speed v, and restrict its motion to the surface of the Earth (i.e. no vertical motion).

(a)	(10)	pts)	Out	of the	e three	fictitious	forces	given	bv	translation,	centrifugal	and	Coriolis.
- \	α_j	(+ 0	Pus	Out	01 011	OILLOO	11C0101Cab	101000	811011	∼.,	or arroration,	Committee	and	COLICIE

$$\vec{F}_{\text{fict}} = -m\ddot{\vec{R}}_S - m\vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2m\vec{\omega} \times \vec{v}, \qquad (1)$$

which one(s) will act on this (otherwise free) cloud? Calculate their magnitude(s) (in terms of v and ω) and their direction(s), in the plane spanned by the surface of the Earth.

` '	(10 pts) For this cloud to trace out a circle around the Earth at constant latitude, it needs

(b) (10 pts) For this cloud to trace out a circle around the Earth at constant latitude, it needs to be subject to a net force pointing north with magnitude $\frac{1}{2}m\omega^2R$ (acting as centripetal force). Can the fictitious forces give rise to such a net force, what condition(s) need to be met for this (for instance in terms of the speed v)?

`	1 /		
	 	<i>c</i> : .: 1 1	

(c) (10 pts) Now consider the Earth from the perspective of an inertial observer located in outer space. Imagine that the center of mass of the Earth is at a constant location in this frame (and thus neglect the effect of the Moon, Sun etc.). What kind of motion does the cloud display as measured by this observer?

1			
1			
1			