Name: Student Number:

Mechanics and Relativity: M3

January 24, 2023, Aletta Jacobshal Duration: 120 mins

Before you start, read the following:

- There are 3 problems with subquestions, and you can earn 90 points in total. Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

Possibly relevant equations:

$$\vec{F} = m\vec{a}$$
, $\vec{L} = \vec{r} \times \vec{p}$, $\vec{\tau} = \vec{r} \times \vec{F}$, $\vec{F}_{centr} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$, $\vec{F}_{Cor} = -2m\vec{\omega} \times \vec{v}$, $\vec{F}_{azim} = -m(\frac{d\vec{\omega}}{dt}) \times \vec{r}$, and the Taylor expansion $(1 + ax)^b \approx 1 + abx + \dots$ at small x .

(a) (10 pts) According to Chasles' theorem, how does one characterize the most general behaviour (at a given

Question 1: Principal axes

moment) of a solid objection does this require?	ect with reference to an	arbitrary point P	inside that body?	Which vector quantities

One of the p	orincipal axes w	t that has the sha ith respect to the er points of the doo	door's center of	mass is the ver	tical direction.	Is this also a prin
a random p	olane that goes	agine a random s through the cen nter of mass wou	ter of mass of	the object. Ho	w many princi	pal axes of the

Name: Student Number:

Question 2: Spinning top without fixed pivot point on table

Consider a spinning top that is spinning and precessing at a table, without its bottom point being fixed to the table - instead, the bottom point can move freely and without friction. Take the top to be spinning clockwise (as seen from above). It has a center of mass at a distance ℓ from its bottom point, and makes an angle θ with respect to the vertical direction. Its moment of inertia around the spinning direction is I_3 , and it is spinning with angular frequency ω_3 . Throughout this exercise, you can use the fast-spinning approximation (in which angular momentum is dominated by spinning) and you only have to consider vertical forces.

gnitude and d m? Indicate i and its rate of	n a planar d	rawing in w				
The bottom ptation of this		cop will trac	e out a circl	e on the table	e. Derive the r	radius, freque
		op will trac	e out a circl	e on the table	e. Derive the r	radius, freque

Question	3:	Dropping	a	hall
Question	J.	Diopping	а	Dan

Imagine you live somewhere on earth at a latitude of 45 degrees, so exactly in between the North Pole and the equator. Approximate the Earth to have a radius of 6400 km, an angular speed of $\omega = 7 \cdot 10^{-5}$ 1/s and a gravitational acceleration of g = 10 m/s². We will be dropping a ball from a height of five meters, resulting in a drop time of one second.

(a) (15 pts) We will first consider the West-East deflection. Which fictitious force is responsible for this?

ulate the o	deflection (one	significant di	git) and indic	eate its direction	on.	esponsible for th	