Mathematical Physics 2025 Mock Exam

Instructions:

- Write your student number on each sheet you submit.
- You are allowed to bring one A4 cheat sheet (double-sided).
- No calculators, textbooks, or digital devices are allowed.
- Write clearly and legibly. Show all necessary steps in your calculations and clearly state any assumptions or theorems used.
- If you use a convention that is not defined in the lectures or textbooks, you must explain it clearly. Otherwise, points will be deducted.
- There are four problems in total. The total score is 100 points. This exam counts for 70% of your final grade.

Useful Identities and Equations

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$
$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$
$$\sin^2 a + \cos^2 a = 1$$

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}, \quad \text{for } a > 0$$
$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$$

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad \frac{d^2 u}{dx^2} = 0 \quad \text{or} \quad \nabla^2 u = 0 \quad \text{(in higher dimensions)}$$

Problem 1: (20pts)

Given the function

$$f(x) = \frac{x^3}{3 - x^2}$$

- (a) Derive the power series representation of f(x) centered at x = 0.
- (b) Determine the radius of convergence of the series and the interval of convergence.

Problem 2: (20pts)

Consider the following differential equation:

$$x^2y'' + 5xy' + (4x^2 + 3)y = 0$$

Solve the differential equation about the singular point $x_0=0$ following these steps:

- (a) Obtain the roots of the indicial equation. Do they admit two linearly independent solutions? Show your work clearly and justify your steps.
- (b) Find the first 6 coefficients of the series in terms of a_0 .

Problem 3: (25pts)

Consider solving the Heat Equation using Fourier series for a metal rod of length L.

- (a) Give the boundary conditions that lead to energy dissipation in the rod.
- (b) Give the boundary conditions that ensures the conservation of energy in the rod.
- (c) Given initial condition u(x,0) = f(x) where u(x,0) is found as

$$u(x,0) = \sum_{0}^{\infty} A_n \cos(\frac{n\pi x}{L}),$$
 and $f(x) = \begin{cases} 1, & 0 < x < L/2 \\ -1, & L/2 < x < L \end{cases}$

Obtain the full solution.

Problem 4: (25pts)

(a) The Fourier transform of an absolutely integrable function f(x). Show that

$$\mathcal{F}[xf(x)] = p\frac{d}{dw} \left\{ \mathcal{F}[f(x)] \right\}.$$

where p is a constant. Find the value of p.

(b) The Airy function Ai(x) satisfies the differential equation

$$\frac{d^2y}{dx^2} - xy = 0.$$

Use Fourier transforms to show that the Airy function Ai(x) can be expressed as

$$Ai(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \cos\left(Aw^3 + Bxw\right) dw,$$

where A, and B are constants.

Determine the values of the constants A and B. Show your work.

Hint: You may use the result of the previous subquestion (4.a). If you can't find p you may express A and B in terms of p.