
Quantum Physics 1 - Homework 1
Solutions

1. [0.2pt.×10 = 2pt.] Which of the following wave functions below can correspond to a physically
realisable state for a particle if A ∈ R++ is some constant?

In order to have a wave function, which can represent a physical state, the wave function has to be
normalisable. Therefore, it should also be square integrable, meaning that

∫
|ψ(x)|2dx <∞. A lack

of a continuous derivative can also be accepted as a valid point for c) and f) , as in order to satisfy
the S.E. (differential equation) the wavefunction needs to be differentiable. For for i) we note that
the limit of ψ(x) as x→ 0 does exists (=1).

a. ψ(x) = A;

b. ψ(x) = Ae−x;

c. ψ(x) = Ae−|x|;

d. ψ(x) = Ae−x
2
;

e. ψ(x) = A/x on x ∈ [1, ∞);

f. ψ(x) = A/
√
x on x ∈ [1, ∞);

g. ψ(x) = Ae− log (x)2 on x ∈ (0, ∞);

h. ψ(x) = A sin (x) on x ∈ [−π, π];

i. ψ(x) = A sin (x)/x;

j. ψ(x) = A [cos (x) + i sin (x)]

2. [8pt.] Consider a wave function of a particle of mass m at t = 0 given by

Ψ(x, 0) =

{
A(eikx + e−ikx) if − π

2k
≤ x ≤ π

2k

0 otherwise
.

a. [1pt.] Find the normalisation constant A and sketch the wave function.

1 =

∫ ∞

−∞
|ψ(x)|2dx

=

∫ π/2k

−π/2k
|2A cos(kx)|2dx = 4|A|2

∫ π/2k

−π/2k
cos2(kx)dx

= 4|A|2 π

2 k
= |A|22π

k

|A|2 = k

2π
→ A =

√
k

2π



Note that it should be 2A on the vertical axis.

b. [1pt.]What is the probability that the particle can be found on the interval 0 ≤ x ≤ π
2k
?

P (0 ≤ x ≤ π
2k
) = 1

2
, which can be seen directly from the sketch since x = 0 is a spatial

symmetry axis of the wave function.

c. [2pt.] Calculate the standard deviation of x; σx.
⟨x⟩ = 0, as the wavefunction is spatially symmetric on the x = 0 axis. This can also be
calculated using

⟨x⟩ =
∫
ψ∗(x)xψ(x)dx = 4|A|2

∫ π/2k

−π/2k
x cos2(kx)dx = 0

as this is an odd integrand on integrated over even boundaries

⟨x2⟩ =
∫
ψ∗(x)x2ψ(x)dx = 4|A|2

∫ π/2k

−π/2k
x2 cos2(kx)dx

= 4|A|2

1

2

∫ π/2k

−π/2k
x2 cos(2kx)dx︸ ︷︷ ︸

Integrate by parts x2 or use integral calculator

+
1

2

∫ π/2k

−π/2k
x2dx

 =
π2 − 6

12k2

=⇒ σx =
√

⟨x2⟩ − ⟨x⟩2 =
√
π2 − 6

12k2
=

1

k

√
π2 − 6

12
≈ 0.57

k

d. [2pt.] Calculate the standard deviation of momentum p; σp.

2



Since we only know how the wavefunction looks like at time t = 0 we cannot use ⟨p⟩ = d⟨x⟩
dt

.

⟨p⟩ = −iℏ
∫
ψ∗(x)

∂ψ(x)

∂x
dx = −iℏ4A2k

∫ π/2k

−π/2k
sin(kx) cos(kx)dx = −iℏ4A2k

2

∫ π/2k

−π/2k
sin(2kx)dx = 0 .

⟨p2⟩ = −ℏ2
∫
ψ∗(x)

∂2ψ(x)

∂x2
dx = ℏ2k2 4A2

∫ π/2k

−π/2k
cos2(kx)dx︸ ︷︷ ︸∫

|ψ(x)|2dx=1

= ℏ2k2 . =⇒ σp = ℏk

e. [1pt.] Does this particle obey Heisenberg’s famous position-momentum uncertainty principle?

From parts c. and d. we find σxσp ≈ 0.57 ℏ > ℏ
2
. Hence, our wave function obeys Heisenberg’s

uncertainty principle!

f. [1pt.] Find the expectation value of the kinetic energy of the particle ⟨E⟩. How is the spatial
spread of the wave function related to ⟨E⟩? How can you explain the dependence, which you
find?

⟨E⟩ =
〈
p2

2m

〉
=

⟨p2⟩
2m

=
ℏ2k2

2m
.

The physical size of the wave function is d = π/k and therefore ⟨E⟩ ∝ 1
d2
, which leads to the

conclusion that our wave function gains energy when it is confined to a smaller physical space.
This phenomenon can be linked to the uncertainty principle. A more confined wave function
means we have more restricted knowledge about the position of the particle, which the wave
function represents (Note: σx ∝ d). Due to the uncertainty principle, this directly has to
result in a broader distribution of possible momenta of the particle, which in turn leads to a
higher expectation value for (kinetic) energy.

Grade = 10!
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