Quantum Physics 1 - Homework 2 Due on Saturday morning (Sept 17) at 12:00.

1. Quantum Harmonic Oscillator [10pt.]

A particle of mass m is trapped in the harmonic potential $V(x) = \frac{1}{2}m\omega^2x^2$, with ω being the frequency of oscillation. The normalised wavefunction of this particle at the time t=0 is given by:

$$\Psi(x,0) = \frac{1}{2} \sqrt[4]{\frac{m\omega}{\pi\hbar}} [b_{+} + ib_{-}] e^{-\frac{m\omega}{2\hbar}x^{2}},$$

with $b_{\pm} = 1 \pm x \sqrt{\frac{2m\omega}{\hbar}}$. Note that b_{\pm} is a function of x.

a. [2pt.] The given wavefunction $\Psi(x,0)$ can be expressed in terms of the wavefunctions ψ_n of the quantum harmonic oscillator as follows:

$$\Psi(x,0) = \sum_{n=0}^{\infty} c_n \,\psi_n(x). \tag{1}$$

The coefficients c_n can be determined using Fourier's trick:

$$c_n = \frac{1}{\sqrt{n!}} \int \psi_0 \ (\hat{a}_-)^n \ \Psi(x, 0) \ dx. \tag{2}$$

Calculate c_0 and c_1 explicitly using Fourier's trick.

Hint: Before trying to evaluate any integrals, check whether they're even or odd.

- b. [1pt.] Calculate $\sum_{n=0}^{1} |c_n|^2$. Does your answer make sense? Explain why. (If you didn't manage to solve question (a), you can take $\Psi(x,0) = \frac{1}{\sqrt{2}}(\psi_0 + i\psi_1)$ for the subsequent calculations.)
- c. [1pt.] What happens when you try to calculate c_2 or higher coefficients?
- d. [1pt.] Construct $\Psi(x,t)$ by adding the time-dependence to $\Psi(x,0)$.
- e. [2pt.] Calculate $\langle x \rangle$ for the time-dependent wavefunction.
- f. [2pt.] We have already seen that we can calculate the expectation value of momentum, $\langle p \rangle$, to get an idea of how the expectation value of position, $\langle x \rangle$, moves over time. Perhaps we're interested in calculating $\langle a \rangle$ today, the expectation value of acceleration:

$$\langle a \rangle = \frac{1}{m} \frac{i}{\hbar} \langle [V, \hat{p}] \rangle. \tag{3}$$

First, calculate the commutator $[V, \hat{p}]$ and substitute $V = \frac{1}{2}m\omega^2 x^2$.

Hint: Follow the same steps as in the book by introducing the 'test function' f.

g. [1pt.] Calculate $\langle a \rangle$ for this wavefunction. How does your result relate to classical mechanics?

 $Grade = your points rounded to the nearest integer in \{1, 4, 7, 10\}.$