
Quantum Physics 1 - Homework 2
Solutions

1. Quantum Harmonic Oscillator [10pt.]

A particle of massm is trapped in the harmonic potential V (x) = 1
2
mω2x2, with ω being the frequency

of oscillation. The normalised wavefunction of this particle at the time t = 0 is given by:

Ψ(x, 0) =
1

2
4

√
mω

πℏ
[b+ + ib−] e

−mω
2ℏ x2

,

with b± = 1± x
√

2mω
ℏ . Note that b± is a function of x.

a. [2pt.] The given wavefunction Ψ(x, 0) can be expressed in terms of the wavefunctions ψn of the
quantum harmonic oscillator as follows:

Ψ(x, 0) =
∞∑
n=0

cn ψn(x). (1)

The coefficients cn can be determined using Fourier’s trick:

cn =
1√
n!

∫
ψ0 (â−)

n Ψ(x, 0) dx. (2)

Calculate c0 and c1 explicitly using Fourier’s trick.

Hint: Before trying to evaluate any integrals, check whether they’re even or odd.

We will use that:

â− =
1√

2ℏmω
(ip̂+mωx) =

1√
2ℏmω

(
ℏ
d

dx
+mωx

)
(3)

and that

Ψ(x, 0) =
1

2
4

√
mω

πℏ
[b+ + ib−] e

−mω
2ℏ x2

(4)

=
1

2
4

√
mω

πℏ

[
1 + x

√
2mω

ℏ
+ i− ix

√
2mω

ℏ

]
e−

mω
2ℏ x2

(5)

=
1

2
4

√
mω

πℏ

[
(1 + i) + (1− i)x

√
2mω

ℏ

]
e−

mω
2ℏ x2

. (6)

You can recognise this as Ψ(x, 0) = 1
2

[(1 + i)ψ0 + (1− i)ψ1], but where’s the fun in that?
Calculating explicitly:

c0 =

∫ ∞

−∞
ψ0 (â−)

0 Ψ(x, 0) dx (7)



=

∫ ∞

−∞
ψ0 Ψ(x, 0) dx (8)

=
1

2

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

[
(1 + i) + (1− i)x

√
2mω

ℏ

]
e−

mω
2ℏ x2

dx (9)

The second term in square brackets makes the integrand odd in x, and given that our integration
interval is even, it integrates to zero. Only the first term survives:

c0 =
1

2

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(1 + i) e−
mω
2ℏ x2

dx (10)

=
1

2

√
mω

πℏ
(1 + i)

∫ ∞

−∞
e−

mω
ℏ x2

dx (11)

=
1

2

√
mω

πℏ
(1 + i)

√
πℏ
mω

(12)

=
1 + i

2
. (13)

For the next coefficient, we get:

c1 =

∫ ∞

−∞
ψ0 (â−)

1 Ψ(x, 0) dx =

∫ ∞

−∞
ψ0 â− Ψ(x, 0) dx (14)

=
1

2

1√
2ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(
ℏ
d

dx
+mωx

) {[
(1 + i) + (1− i)x

√
2mω

ℏ

]
e−

mω
2ℏ x2

}
dx

(15)

â− applied on the first term in square brackets is no good: both the d
dx

and x term will transform
it to an odd function in x. So, only the second term needs to be evaluated:

c1 =
1

2

1√
2ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(
ℏ
d

dx
+mωx

) {
(1− i)x

√
2mω

ℏ
e−

mω
2ℏ x2

}
dx (16)

=
1− i

2ℏ

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(
ℏ
d

dx
+mωx

) {
x e−

mω
2ℏ x2

}
dx (17)

=
1− i

2ℏ

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

{
ℏ+ ℏ · x · −mωx

ℏ
+mωx2

}
e−

mω
2ℏ x2

dx (18)

=
1− i

2

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2 {ℏ} e−

mω
2

x2

dx (19)

=
1− i

2

√
mω

πℏ

∫ ∞

−∞
e−

mω
ℏ x2

dx =
1− i

2

√
mω

πℏ

√
πℏ
mω

(20)

=
1− i

2
(21)

Since the wavefunction is given to be normalised, and since |c0|2 + |c1|2 = 1, we know already
now the other coefficients should be zero.
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b. [1pt.] Calculate
∑1

n=0 |cn|2. Does your answer make sense? Explain why. (If you didn’t manage
to solve question (a), you can take Ψ(x, 0) = 1√

2
(ψ0 + iψ1) for the subsequent calculations.)

Yes:
∞∑
n=0

|cn|2 = |c0|2 + |c1|2 =
|1 + i|2

22
+

|1− i|2

22
=

2

4
+

2

4
= 1. (22)

This makes sense because |cn|2 represents a probability. The sum over all configurations should
hence be 1 (assuming a proper normalisation).

c. [1pt.] What happens when you try to calculate c2 or higher coefficients?

Physically, we note that the wavefunction can be expressed in terms of ψ0 and ψ1 only. This
means that if we apply the lowering operator â− at least twice (for coefficients c2 and higher),
than we destroy both ψ0 and ψ1. In other words, all ψn components are annihilated and the
integral for c2 (and higher) will be zero for sure.

Mathematically, we can show this as follows (this derivation is by no means required, it’s just
here to show what happens mathematically). We can check cm, m ≥ 2 using our previous
results:

cm =
1

4ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m

{[
(1 + i) + (1− i)x

√
2mω

ℏ

]
e−

mω
2ℏ x2

}
dx (23)

=
1

4ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−1

(
ℏ
d

dx
+mωx

) {[
(1 + i) + (1− i)x

√
2mω

ℏ

]
e−

mω
2ℏ x2

}
dx

(24)

=
1

4ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−1

{[
(1 + i)(−mωx+mωx) + (1− i)

√
2mωℏ

]
e−

mω
2ℏ x2

}
dx

(25)

=
1

4ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−2

(
ℏ
d

dx
+mωx

){
(1− i)

√
2mωℏ e−

mω
2ℏ x2

}
dx (26)

=
1− i√
2ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−2

(
ℏ
d

dx
+mωx

)
e−

mω
2ℏ x2

dx (27)

=
1− i√
2ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−2

(
ℏ · −mωx

ℏ
+mωx

)
e−

mω
2ℏ x2

dx (28)

=
1− i√
2ℏmω

√
mω

πℏ

∫ ∞

−∞
e−

mω
2ℏ x2

(â−)
m−2 (0) e−

mω
2ℏ x2

dx (29)

= 0. (30)

So, the series terminates at m = 2: for any integer n ≥ m = 2, cn = 0 for sure. Therefore, we
have that

Ψ(x, 0) =
1

2
[(1 + i)ψ0 + (1− i)ψ1] (31)
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d. [1pt.] Construct Ψ(x, t) by adding the time-dependence to Ψ(x, 0).

The energies of ψ0 and ψ1 are respectively E0 =
1
2
ℏω and E1 =

3
2
ℏω, hence:

Ψ(x, t) =
1

2

[
(1 + i)ψ0e

− i
2
ωt + (1− i)ψ1e

− 3i
2
ωt
]

(32)

e. [2pt.] Calculate ⟨x⟩ for the time-dependent wavefunction.

The expectation value for position is:

⟨x⟩ =
∫

Ψ∗(x, t) x Ψ(x, t) dx (33)

=

∫ [
c∗0ψ0e

i
2
ωt + c∗1ψ1e

3i
2
ωt
]
x

[
c0ψ0e

− i
2
ωt + c1ψ1e

− 3i
2
ωt
]
dx (34)

=

√
ℏ

2mω

∫ [
c∗0ψ0e

i
2
ωt + c∗1ψ1e

3i
2
ωt
]
(â+ + â−)

[
c0ψ0e

− i
2
ωt + c1ψ1e

− 3i
2
ωt
]
dx (35)

=

√
ℏ

2mω

∫ [
c∗0ψ0e

i
2
ωt + c∗1ψ1e

3i
2
ωt
] [

c0ψ1e
− i

2
ωt + c1

√
2ψ2e

− 3i
2
ωt + c1ψ0e

− 3i
2
ωt
]
dx (36)

Here we used that â+ψn =
√
n+ 1ψn+1, â−ψn =

√
nψn−1 and â−ψ0 = 0. By the orthonormality

of the wavefunctions,
∫
ψmψn dx = δmn, so this reduces to:

=

√
ℏ

2mω

[
c∗0c1e

−iωt + c0c
∗
1e

iωt
]

(37)

=
1

4

√
ℏ

2mω

[
(1− i)2e−iωt + (1 + i)2eiωt

]
(38)

=
1

4

√
ℏ

2mω

[
−2ie−iωt + 2ieiωt

]
(39)

=
1

4

√
ℏ

2mω
[−4sin(ωt)] (40)

= −
√

ℏ
2mω

sin (ωt) (41)

f. [2pt.] We have already seen that we can calculate the expectation value of momentum, ⟨p⟩,
to get an idea of how the expectation value of position, ⟨x⟩, moves over time. Perhaps we’re
interested in calculating ⟨a⟩ today, the expectation value of acceleration:

⟨a⟩ = 1

m

i

ℏ
⟨ [V, p̂ ] ⟩. (42)

First, calculate the commutator [V, p̂ ] and substitute V = 1
2
mω2x2.

Hint: Follow the same steps as in the book by introducing the ’test function’ f.
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We let the commutator act on a test function f :

[V, p̂ ] f = V p̂f − p̂V f (43)

= −iℏV d

dx
f + iℏ

d

dx
(V f) (44)

= −iℏV d

dx
f + iℏ

d

dx
(V ) f + iℏV

d

dx
f (45)

= iℏ
d

dx
(V ) f (46)

So by dropping the test function f again, we find:

[V, p̂ ] = iℏ
dV

dx
= iℏmω2x. (47)

g. [1pt.] Calculate ⟨a⟩ for this wavefunction. How does your result relate to classical mechanics?

The expectation value for acceleration can now be derived as follows:

⟨a⟩ = 1

m

i

ℏ
⟨ [V, p̂ ] ⟩ (48)

=
1

m

i

ℏ
⟨ iℏmω2x ⟩ (49)

= −ω2⟨x⟩ = − k

m
⟨x⟩ (50)

=
k

m

√
ℏ

2mω
sin (ωt) (51)

Of course, we recognise ⟨a⟩ = − k
m
⟨x⟩ as being the quantum mechanical version of Hooke’s

Law from classical dynamics. This shows (by Ehrenfest’s Theorem) that quantum expectation
values obey the classical laws.

Grade = your points rounded to the nearest integer in {1, 4, 7, 10}.
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