
Quantum Physics 1 - Homework 3
Solutions

Double Delta-Function Potential [10.5pts.]

Grading note: Up to 10.5pts can be obtained in this homework.

Grade Points
1 0 - 2.5
4 3 - 5.5
7 6 - 8.5
10 9 - 10.5

We are going to take a look at some of the possible behaviours of a particle of mass m in a one-
dimensional double-delta potential given by:

V (x) = −αδ(x)− αδ(x− x0), (1)

where α and x0 are positive real numbers.

1. (0.5pts.) Sketch this potential.

2. (1.5pts.) How many bound states with different energies are permitted in the potential given
by equation 1? Sketch all options and label them ψ1, ψ2, .... (You don’t have to find the
mathematical description of their wavefunctions.)
There can be up to two bound states of different energy - a ground state ψ1 and an excited
state ψ2. More in exercise 2.27 in 2nd Ed.
This question was often solved quantitatively instead of qualitatively, causing it to take way
longer than expected.

3. (1pt.) In which points or intervals is there a non-zero probability of finding a particle in a
bound state? (You can discuss each bound state individually if necessary.) How does this
compare to a classical particle?
The ground state has a non-zero probability everywhere (although it’s exponentially decreas-
ing), the probability distribution for the first excited state is non-zero everywhere except for
x = x0/2. A bound classical particle in such potential would be allowed to exist only in either
of the wells (i.e. at the points x = 0 or x = x0).



4. (0.5pts.) What range of energies do the scattering states correspond to?
The scattering states can have any energy larger than 0.

In the next few steps, we will derive the reflection and transmission coefficients for some of the states.
Consider scattering states that have a wavenumber (and hence momentum) given by k = nπ/x0 with
n an arbitrary positive integer.

5. (1.5pts.) Write down the most general spatial wavefunction corresponding to an incoming
scattering state from the left (i.e. from negative infinity). Is this wavefunction normalisable?
Do not worry about time-dependence, boundary conditions and calculating normalisation for
the moment.

ψ(x) =


Aeikx +Be−ikx, if x < 0

Ceikx +De−ikx, if 0 ≤ x ≤ x0

Eeikx, if x > x0

(2)

This wavefunction is not normalisable, just as the free particle stationary states are not.

6. (1.5pts.) What boundary conditions need to be imposed?

(a) The wave function must be continuous everywhere. Complex exponentials (sines and
cosines) are continuous on their domain, so we must now only pay attention to the points
where domains of definition connect:
x = 0:

A+B = C +D

x = x0:

Ceikx0 +De−ikx0 = Eeikx0

Ceinπ +De−inπ = Eeinπ, using k =
nπ

x0
C +D = E

Combined we obtain condition: A+B = C +D = E
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(b) The derivative of the wavefunction must be continuous everywhere except for points of
infinite potential. In such cases, a condition resulting from a size of a jump in the derivative
can be calculated in the following way, starting from the time-independent Schrödinger
equation:
x = 0:

− ℏ2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x)

−
∫ ϵ

−ϵ

ℏ2

2m

∂2ψ(x)

∂x2
dx +

∫ ϵ

−ϵ

V (x)ψ(x) dx =

∫ ϵ

−ϵ

Eψ(x) dx

− ℏ2

2m

∫ ϵ

−ϵ

∂2ψ(x)

∂x2
dx − α

∫ ϵ

−ϵ

δ(x)ψ(x) dx =

∫ ϵ

−ϵ

Eψ(x) dx

Now take the limit ϵ→ 0 :

− ℏ2

2m
∆
∂ψ(x)

∂x

∣∣∣∣
x=0

− αψ(0) = 0

∆
∂ψ(x)

∂x

∣∣∣∣
x=0

= −2mα

ℏ2
ψ(0)

To find the jump in the derivative, we look at the values of the derivative from left and
from right and then take their difference:

∂ψ(x)

∂x

∣∣∣∣
x=0−

= Aikeikx −Bike−ikx

∣∣∣∣
x=0

= ik(A−B)

∂ψ(x)

∂x

∣∣∣∣
x=0+

= Cikeikx −Dike−ikx

∣∣∣∣
x=0

= ik(C −D)

Plugging the value of ψ at 0 and the difference back into previous equation yields:

ik(C −D − A+B) = −2mα

ℏ2
(A+B)

C −D − A+B = −i2mα
kℏ2

(A+B)

C −D = A (1 + i
2mα

kℏ2
)−B (1− i

2mα

kℏ2
)

Similar procedure can be applied to the point x = x0, this time using the jump in deriva-
tives between Ceikx +De−ikx and Eeikx. This obtains the following boundary condition:

C −D = E (1− i
2mα

kℏ2
)

Combining the two boundary conditions from the derivative of ψ yields:

A (1 + i
2mα

kℏ2
)−B (1− i

2mα

kℏ2
) = C −D = E (1− i

2mα

kℏ2
)
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7. (2pts.) Now that you have the potential, wavefunction and boundary conditions, find the
transmission and reflection coefficients as a function of α.

T =
|E|2

|A|2
and R =

|B|2

|A|2

We use the boundary conditions to find the relation between E and A, and B and A.

A (1 + i
2mα

kℏ2
)−B (1− i

2mα

kℏ2
) = E (1− i

2mα

kℏ2
)

A (1 + i
2mα

kℏ2
)−B (1− i

2mα

kℏ2
) = (A+B) (1− i

2mα

kℏ2
)

A (1 + i
2mα

kℏ2
)−B (1− i

2mα

kℏ2
) = A (1− i

2mα

kℏ2
) +B (1− i

2mα

kℏ2
)

A 2i
2mα

kℏ2
= B (2− 2i

2mα

kℏ2
)

A i
2mα

kℏ2
= B (1− i

2mα

kℏ2
)

B

A
=

i2mα
kℏ2

1− i2mα
kℏ2

R =
|B|2

|A|2
=

|i2mα
kℏ2 |

2

|1− i2mα
kℏ2 |2

=
4m2α2

k2ℏ4

1 + 4m2α2

k2ℏ4
=

4m2α2

k2ℏ4 + 4m2α2

We can substitute for k here and continue as below but it is not necessary.

R =
4m2α2

n2π2

x2
0
ℏ4 + 4m2α2

=
4m2α2x20

n2π2ℏ4 + 4m2α2x20

Same method can be used to obtain the transmission coefficient, at the beginning we substitute
B = E − A:

A (1 + i
2mα

kℏ2
)− (E − A) (1− i

2mα

kℏ2
) = E (1− i

2mα

kℏ2
).

After a bit of rearranging we can find the transmission coefficient to be

T =
|E|2

|A|2
=

1

1 + 4m2α2

k2ℏ4
=

k2ℏ4

k2ℏ4 + 4m2α2

=

n2π2

x2
0
ℏ4

n2π2

x2
0
ℏ4 + 4m2α2

=
n2π2ℏ4

n2π2ℏ4 + 4m2α2x20

 .

Many students did not notice the value given for k and solved the problem for a general case,
which requires significantly more effort and time.

8. (1pt.) In general, do the scattering states of this potential have discrete energy levels? In the
questions above we set k = nπ/x0 with n ∈ N. Is this the correct/only possible quantisation of
the energies of the scattering states?
Scattering states of this system do not have discrete energy levels but instead make up a
continuous spectrum. (In the calculation of the transmission and reflection coefficients, we
merely chose a subset of the stationary states which have wavenumber k easy to work with.)
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An arbitrary wavefunction can be written as a linear combination of functions from a complete set
of eigenstates.

9. (1pt.) Write down the general formula for an arbitrary wavefunction Ψ(x, t) using the stationary
states of the potential given by equation 1. Don’t forget to include time dependence. You don’t
have to find the exact energies and you can assume that the stationary states of this potential
form a complete set. Hint: Check out equation 2.100 (2nd Ed) or 2.101 (3rd Ed)

Ψ(x, t) = c1ψ1(x)e
−iE1t/ℏ + c2ψ2(x)e

−iE2t/ℏ +
1√
2π

∫ ∞

−∞
eikxe−iE(k)t/ℏ ϕ(k) dk

Only very few students included the bound states.

Grade = 10 × percentage of your points rounded to the nearest integer in {1, 4, 7, 10}.
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