
Quantum Physics 1 - Homework 4
Due on Monday Oct 3, 12AM

1. Wavepacket Scattering and the Plane-Wave Approximation [9pt.]

In class, reflection and transmission coefficients (R and T ) are derived using plane waves. Using
plane waves as wavefunctions is convenient from a mathematical viewpoint, but very awkward at
the same time, since they are not normalizable. More realistic is to consider a Gaussian wavepacket
scattering off a potential. Such a wavepacket is normalizable, but its evolution cannot be solved for
analytically. Computer simulations of wavepackets scattering on a potential barrier are shown in
class (see also GWP-scattering-k271.mp4 attached).

In the exercise, you will investigate how well the plane-wave approximations for R and T compare
to numerical simulations of Gaussian wavepackets scattering off a potential barrier. Throughout, set
ℏ ≡ 1 (so momenta k and wavenumbers become equivalent) and take the mass of the particle to be
m = 1/2. The kinetic energy of the particle is then E(k) = ℏ2k2/2m = k2. These units are used in
the simulation as well.

Gaussian wavepackets

In the simulation, the initial wavefunction has the form:

ψ(x, t = 0) = (πσ2
0)

−1/4 e−(x−x0)2/2σ2
0 eik0x,

and is called a Gaussian wavepacket since the probability density |ψ|2 is a Gaussian. Its standard
deviation is ∆x =

√
⟨x2⟩ − ⟨x⟩2 = σ0/

√
2, which gives a measure of the ‘spread’ of the wavefunc-

tion. The initial momentum space wavefunction ϕ(k, t = 0) can be obtained by taking the Fourier
transform1 of ψ(x, t = 0), the result is:

ϕ(k, 0) = (σ2
0/π)

1/4 e−σ2
0(k−k0)2/2 e−i(k−k0)x0 ,

which again corresponds to the distribution |ϕ|2 being a Gaussian. Here k0 is the average momentum
or expectation value of the distribution.

a) (1.5pt) Compute the spread in momentum ∆k =
√
⟨k2⟩ − ⟨k⟩2. Comment on the resulting

product ∆x ∆k.

Hint: To compute the integrals, you can set k0 ≡ 0 without loss of generality. The follow-
ing integral is useful: ∫ +∞

−∞
dx x2 e−αx2

=

√
π

α

1

2α
.

1The Fourier transform is defined as:

ϕ(k, t = 0) =
1√
2π

∫ +∞

−∞
ψ(x) e−ikx dx.



Figure 1: Left: |ψ|2(x). Right: ϕ(k).

First we compute ⟨k⟩ (with k0 = 0):

⟨k⟩ =
∫ ∞

−∞
dk k|ϕ|2 = 0,

since k is an odd function and |ϕ|2 ∝ e−σ2
0k

2/2 is even and the product is odd, yielding zero.
Now consider ⟨k2⟩, which gives:

⟨k2⟩ =
∫ ∞

−∞
dk k2|ϕ|2 =

√
σ2
0

π

∫ +∞

−∞
dk k2 e−σ2

0k
2

=

√
σ2
0

π

√
π

σ2
0

1

2σ2
0

=
1

2σ2
0

.

Then ∆k = 1/
√
2σ0. The product ∆x ∆k = 1/2, which means that the wavepacket hits (sat-

urates) the Heisenberg uncertainty principle (recall that ℏ = 1), this is a well-known property
of Gaussian wavepackets.

Plane Waves

For plane-waves, ∆x and ∆k become less well-defined, since they are not normalizable. However,
to get a better feeling for the regime in which plane waves become reasonable approximations to
well-defined wavepackets, you will take a stubborn attitude and give meaning to ∆x and ∆k anyway.

b) Consider a plane wave of the form ψ(x) = A eik0x.

i) (0.5pt) Sketch the probability density |ψ|2 as a function of x.

The sketch should be a horizontal line at height A2 above the x-axis, essentially spanning
the entire axis (from x = −∞ to x = +∞). See Fig. 1 (left).

ii) (0.5pt) Based on the sketch, what is the ‘spread’ ∆x? No calculation required; a qualitative
answer suffices.

From the sketch, you see that |ψ|2 spreads along the entire x-axis, so that ∆x is practically
infinite for a plane wave: ∆x→ ∞.

iii) (0.5pt) How does this spread compare to the wavelength λ0 = 2π/k0 of the plane wave?

The spread ∆x is much much larger than the wavelength λ0, which we assume to be finite:
∆x≫ λ0.

c) The momentum space wavefunction ϕ(k) is related to ψ(x) via the Fourier transform.
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i) (0.5pt) Show that for the plane wave above, ϕ(k) is proportional to a Dirac delta function
located at k = k0.

The Dirac delta function δ(k) is given by:

δ(k) =

∫
dx

2π
e−ikx.

Inserting ψ(x) = A eikx into the Fourier transform, we find:

ϕ(k) = A

∫
dx√
2π

e−i(k−k0)x = A×
√
2π δ(k − k0) ∝ δ(k − k0).

ii) (0.5pt) Sketch ϕ(k) as a function of k.

Since the incident wave is travelling in the positive x direction, we have k0 > 0 and the
sketch should be a spike, representing the Dirac delta function, at k = k0. See Fig. 1
(right).

iii) (0.5pt) What is the ‘spread’ ∆k? Again, a qualitative answer suffices.

The Dirac delta function is an infinitely thin spike with essential no spread, so ∆k → 0.

iv) (0.5pt) How does this spread compare to the momentum k0?

Assuming k0 is finite, we have ∆k ≪ k0 or ∆k/k0 → 0.

Simulations

In the simulations, like in video GWP-scattering-k271.mp4, Gaussian wavepackets with σ0 = 0.05
and momenta k0 in the range 150− 750 impinge a rectangular potential barrier of height V0 = 63170
and width w = 0.021.

d) (2pt) Watch GWP-scattering-k271.mp4 and estimate the approximate values of the transmis-
sion and reflection coefficients from the graphs (one digit accuracy suffices). After scattering
on the potential well, the initial wavepacket (which is normalized to have unit area) splits into
the transmitted and reflected wavepackets. Integrating over the area of these wavepackets gives
us the transmission and reflection coefficients. These automatically satisfy R+T = 1 since the
initial wavepacket is normalized and probability is conserved. From a first glance, these are
roughly R = 2/3 and T = 1/3.

The dataset kRdata.csv contains reflection coefficients (second column) numerically determined in
the simulation for a large number of momenta k0 equally spaced in the range 150−750 (first column).
Import the dataset into a python notebook and visualize it in a scatter plot, the result should look
something like Fig. 2 below.

e) (2pt) Look up the reflection coefficient R for scattering of plane waves off a potential barrier
as a function of momentum k0. Add it as a continuous curve to the plot. This question only
requires the resulting plot; no code or formulae are needed. Please add your name(s) to the
legend of the plot.

Hint: Be careful with the two different regimes k20 < V0 and k20 > V0! Recall that we use units
where ℏ = 1 and m = 1/2.

For scattering states, with E = k20 > V0, we have:

Rscat = 1− 1

1 + V 2
0 sin2(k1w)/[4E(E − V0)]

,
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Figure 2:

where k1 =
√
E − V0. For bound states, with k20 < V0, we have:

Rbound = 1− 1

1 + V 2
0 sinh2(k1w)/[4E(V0 − E)]

,

where k1 =
√
V0 − E. In the simulation, the turnover point between the two solutions occurs

at k0 =
√
V0 ≃ 251. See the curve in blue in the plot. To correctly plot this, one makes an

array with k0 values spanning from 150 to 251 and evaluates Rbound on array values. For the
range 251 to 750 one does the same, but now using Rscat.

Figure 3:

You should find that the plane wave curve agrees well with the simulation data for k0 ≳ 400 as well
as for k0 ≲ 200.
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f) (1pt) From your answers at b) and c), explain why the plane-wave curve and simulation data
agree more and more as the momentum increases.

Given that σ0 = 0.05, we have ∆k ≃ 14.14 so that ∆k/k0 = 14.14/k0. Therefore you see
that as the momentum k0 increases, the ratio ∆k/k0 becomes smaller and smaller, making the
wavepackets better and better approximated by plane waves. In the plot produced in e), we
indeed find that as k0 increases beyond k0 ≳ 400, the blue curve matches the simulation data
very well since the plane wave-approximation becomes applicable there.
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