Quantum Physics 1 - Homework 5 Due on Thursday (Sept 9) at 23:59

Grade	Points
1	0 - 1.5
4	2 - 3.5
7	4 - 7
10	7.5 - 9

- 1. [2pt.] Are the following statements true or false?
 - (a) A state cannot be a simultaneous eigenstate of two compatible observables. False
 - (b) Hermitian operators have real eigenvalues in finite-dimensional vector spaces. True
 - (c) All wavefunctions are linear combinations of eigenfunctions of a Hermitian operator. True
 - (d) The generalized uncertainty principle is one of the central assumptions of quantum mechanics. False
 - (e) If a matrix is equal to the complex conjugate of its transpose, then the matrix is Hermitian. True
 - (f) All observables are Hermitian. True
- 2. [3pt] Recall that the groundstate wavefunction for the harmonic oscillator is given by:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2} \tag{1}$$

Calculate the expectation value of the product of the position and momentum operator, $\langle xp \rangle$, in the ground state of the harmonic oscillator. What does the answer tell you about the hermiticity of the $\hat{x}\hat{p}$ operator?

The expectation value can be calculated as follows:

$$\langle xp \rangle = \int_{-\infty}^{\infty} \psi_0(x) \left(-i\hbar x \frac{d}{dx} \right) \psi_0(x) dx$$
 (2)

$$= -i\hbar \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} \int_{-\infty}^{\infty} e^{-\frac{m\omega}{2\hbar}x^2} \frac{d}{dx} e^{-\frac{m\omega}{2\hbar}x^2} dx \tag{3}$$

$$= im\omega \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} \int_{-\infty}^{\infty} x^2 e^{-\frac{m\omega}{\hbar}x^2} dx \tag{4}$$

$$=i\hbar/2\tag{5}$$

Because the expectation value is imaginary, we conclude that xp cannot be a hermitian operator.

2. [2+1+1=4pt.] The Hamiltonian for a certain three-level system is

$$\hat{H} = \epsilon \left(|\alpha\rangle \langle \alpha| + |\alpha\rangle \langle \gamma| + |\beta\rangle \langle \beta| + |\gamma\rangle \langle \alpha| + |\gamma\rangle \langle \gamma| \right), \tag{6}$$

where $|\alpha\rangle$, $|\beta\rangle$, $|\gamma\rangle$ is an orthonormal basis and ϵ is a nonzero number with the dimensions of energy.

(a) Taking $\hat{H} |\alpha\rangle = \epsilon(|\alpha\rangle + |\beta\rangle)$ tells us that $|\alpha\rangle$ is **not** an eigenstate of the Hamiltonian. Find the normalised eigenstates and corresponding eigenvalues of the Hamiltonian. (Hint: Write the general eigenvector as $|\psi\rangle = c_{\alpha} |\alpha\rangle + c_{\beta} |\beta\rangle + c_{\gamma} |\gamma\rangle$)

Write the eigenvector as $|\psi\rangle = c_{\alpha} |\alpha\rangle + c_{\beta} |\beta\rangle + c_{\gamma} |\gamma\rangle$, and call the eigenvalue E. The eigenvalue equation is

$$\hat{H} |\psi\rangle = \epsilon \left(|\alpha\rangle \langle \alpha| + |\alpha\rangle \langle \gamma| + |\beta\rangle \langle \beta| + |\gamma\rangle \langle \alpha| + |\gamma\rangle \langle \gamma| \right) \left(c_{\alpha} |\alpha\rangle + c_{\beta} |\beta\rangle + c_{\gamma} |\gamma\rangle \right)$$

$$\hat{H} |\psi\rangle = \epsilon \left(\left(c_{\alpha} + c_{\gamma} \right) |\alpha\rangle + c_{\beta} |\beta\rangle + \left(c_{\alpha} + c_{\gamma} \right) |\gamma\rangle \right)$$

Where we have used the orthonormality of the basisvectors $\langle f_m | f_n \rangle = \delta_{mn}$. We find 3 sets of equations:

$$\epsilon(c_{\alpha} + c_{\gamma}) |\alpha\rangle = Ec_{\alpha} |\alpha\rangle \tag{7}$$

$$\epsilon \left(c_{\beta} \left| \beta \right\rangle \right) = E c_{\beta} \left| \beta \right\rangle \tag{8}$$

$$\epsilon(c_{\alpha} + c_{\gamma}) |\beta\rangle = Ec_{\gamma} |\gamma\rangle \tag{9}$$

From 7 and 9, we see that either $c_{\alpha}=c_{\gamma}$ or E=0 in which case $c_{\alpha}=-c_{\gamma}$. The latter can be normalized to give the first normalized eigenstate

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left[|\alpha\rangle - |\gamma\rangle \right].$$

Meanwhile, when $c_{\alpha} = c_{\gamma}$, we can let $c_{\beta} = 0$ to find another eigenvector, this time with eigenvalue 2ϵ . Normalizing this eigenstate gives

$$|\psi_2\rangle = \frac{1}{\sqrt{2}} \left[|\alpha\rangle + |\gamma\rangle \right].$$

Finally, by setting $c_{\alpha} = c_{\gamma} = 0$, we can let $c_{\beta} = 1$ to obtain a third eigenstate with eigenvalue ϵ

$$|\Psi_3\rangle = |\beta\rangle$$
.

Note that $|\psi_2\rangle$ is not an excited state of $|\psi_1\rangle$, it is just the notation used to number the eigenstates.

(b) What is the matrix **H** representing \hat{H} with respect to the $\{|\alpha\rangle, |\beta\rangle, |\gamma\rangle\}$ basis?

$$\mathbf{H} = \epsilon \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(c) Denote the time evolution of the eigenstates.

$$\begin{aligned} |\Psi_1(t)\rangle &= \frac{1}{\sqrt{2}} \left[|\alpha\rangle - |\gamma\rangle \right]. \\ |\Psi_2(t)\rangle &= \frac{1}{\sqrt{2}} \left[|\alpha\rangle + |\gamma\rangle \right] e^{+i2\epsilon t/\hbar} \\ |\Psi_3(t)\rangle &= |\beta\rangle e^{+i\epsilon t/\hbar} \end{aligned}$$

also accepted

$$|\Psi(t)\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle e^{+i2\epsilon t/\hbar} + c_3 |\psi_3\rangle e^{+i\epsilon t/\hbar}.$$

Grade = 10.