
Quantum Physics 1 - Homework 7
Due on Monday (Oct 24th) at 11:59 AM

Grade Points
1 0 - 2.5
4 3 - 5
7 5.5 - 7.5
10 8 - 9.5

1a) [1pt.] Show that the operators Â and B̂ commute if the matrices A and B representing them have
the same eigenvectors, and these eigenvectors span the vector space.

Let’s call the eigenvalues of our matrices a and b, such that

Av = av, (1)

and
Bv = bv, (2)

where v is an eigenvector of the two matrices. If we apply the matrices successively we get

BAv = bav. (3)

Since ba = ab we can rewrite this to
BAv = abv. (4)

This is only true when BA = AB, if this holds for every eigenvector this gives us that (hence the
question states that all eigenvectors are the same, not just one)[

Â, B̂
]
= ÂB̂ − B̂Â = 0. (5)

b) [0.5pt.] What does your result in a) tell you about the value of the commutator
[
Ŝ2, Ŝz

]
?

eq 4.142 and 4.144 tell us that the matrices representing the operators have the same eigenspinors,
so they commute, [

Ŝ2, Ŝz

]
= 0. (6)

c) [1pt.] What is the trace of the Pauli matrices? And how does it relate to their eigenvalues?

tr(σx) = tr(σy) = tr(σz) = 0 =
∑
i

λi (7)

The trace of the matrices and sum of the eigenvalues is zero, this also holds for a spin 3/2 particle
as you can see in q2bc.
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2a) [0.5pt.] What are the possible states |sm⟩ for a particle with s = 3/2?

|sm⟩ =
∣∣∣∣32 − 3

2

〉
,

∣∣∣∣32 − 1

2

〉
,

∣∣∣∣32 12
〉
,

∣∣∣∣32 32
〉

(8)

b) [1pt.] Use the results of exercise 4.53 (2nd edition) or 4.62 (3rd edition) to construct the matrices
representing Ŝx and Ŝz for a particle with s = 3/2.

Sz = ℏ


3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

 (9)

Sz =
ℏ
2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 (10)

Sx =
ℏ
2


0 bs 0 0
bs 0 bs−1 0
0 bs−1 0 bs−2

0 0 bs−2 0

 (11)

s = 3/2, so bj =
√

(3/2 + j)(5/2− j).

bs =
√
3

bs−1 = 2

bs−2 =
√
3

Sx =
ℏ
2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 (12)

c) [1.5pt.] What are the eigenvalues of the matrix Sx you constructed in the previous question? If
you didn’t get an answer in b) you can use Sy instead:

Sy =
iℏ
2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0

 (13)
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To find the eigenvalues λ we will use the characteristic equation:

det (Sx − λI) = 0 (14)

∣∣∣∣∣∣∣∣∣∣
−λ

√
3ℏ
2

0 0√
3ℏ
2

−λ ℏ 0

0 ℏ −λ
√
3ℏ
2

0 0
√
3ℏ
2

−λ

∣∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣
−λ ℏ 0

ℏ −λ
√
3ℏ
2

0
√
3ℏ
2

−λ

∣∣∣∣∣∣∣−
√
3ℏ
2

∣∣∣∣∣∣∣
√
3ℏ
2

ℏ 0

0 −λ
√
3ℏ
2

0
√
3ℏ
2

−λ

∣∣∣∣∣∣∣ (15)

= λ2

∣∣∣∣∣−λ
√
3ℏ
2√

3ℏ
2

−λ

∣∣∣∣∣+ λℏ

∣∣∣∣∣ℏ
√
3ℏ
2

0 −λ

∣∣∣∣∣− 3ℏ2

4

∣∣∣∣∣−λ
√
3ℏ
2√

3ℏ
2

−λ

∣∣∣∣∣+
√
3ℏ2

2

∣∣∣∣∣0
√
3ℏ
2

0 −λ

∣∣∣∣∣ (16)

= λ4 − 3ℏ2λ2

4
− ℏ2λ2 − 3ℏ2λ2

4
+

9ℏ4

16
= λ4 − 5ℏ2λ2

2
+

9ℏ4

16
= 0 (17)

By substituting x = λ2 we can use the quadratic equation to find: λ1 =
3ℏ
2
, λ2 =

ℏ
2
, λ3 = −ℏ

2
and

λ4 = −3ℏ
2
.

For Sy the same process can be used to obtain∣∣∣∣∣∣∣∣∣∣
−λ −

√
3ℏ
2

0 0√
3ℏ
2

−λ −ℏ 0

0 ℏ −λ −
√
3ℏ
2

0 0
√
3ℏ
2

−λ

∣∣∣∣∣∣∣∣∣∣
= λ4 − 5ℏ2λ2

2
+

9ℏ4

16
. (18)

By again substituting x = λ2 we find that λ1 =
3ℏ
2
, λ2 =

ℏ
2
, λ3 = −ℏ

2
and λ4 = −3ℏ

2
.

d) [0.5pt.] Explain qualitatively why the eigenvalues of Sx, Sy and Sz have to be the same.

The matrices Sx, Sy and Sz all describe a spin 3/2 particle and the coordinate axes are chosen
arbitrarily, meaning there is no preferred direction. So it wouldn’t make any sense for matrices to
have different eigenvalues.

e) [2pt.] Find the normalised eigenspinors of Sx, you can use Sy if you didn’t find an answer in b).
0

√
3ℏ
2

0 0√
3ℏ
2

0 ℏ 0

0 ℏ 0
√
3ℏ
2

0 0
√
3ℏ
2

0



a
b
c
d

 =


√
3ℏ
2
b√

3ℏ
2
a+ ℏc

ℏb+
√
3ℏ
2
d√

3ℏ
2
c

 (19)

λn


a
b
c
d

 =


√
3ℏ
2
b√

3ℏ
2
a+ ℏc

ℏb+
√
3ℏ
2
d√

3ℏ
2
c

 (20)

We will normalise the eigenspinor later anyway, so let’s pick a = 1 and solve the equation for the
eigenvalues we found in c), starting with λ1 =

3ℏ
2
:
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3ℏ
2

=

√
3ℏ
2

b

b =
√
3

3
√
3ℏ
2

=

√
3ℏ
2

+ ℏc

c =
√
3

3ℏ
2
d =

√
3ℏ
2

√
3

d = 1

v⃗1 =


1√
3√
3
1

 (21)

v̂1 =
1

2
√
2


1√
3√
3
1

 (22)

Now for λ2 =
ℏ
2

ℏ
2
=

√
3ℏ
2

b

b =
1√
3

ℏ
2
√
3
=

√
3ℏ
2

+ ℏc

c =
−2

2
√
3
= − 1√

3

ℏd
2

= −
√
3ℏ
2

1√
3

d = −1

v̂2 =

√
6

4


1
1√
3

− 1√
3

−1

 (23)

For λ3 = −ℏ
2

−ℏ
2
=

√
3ℏ
2

b

b = − 1√
3

ℏ
2
√
3
=

√
3ℏ
2

+ ℏc
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c =
1

2
√
3
−

√
3

2
= − 1√

3

−ℏd
2

= −
√
3ℏ
2

1√
3

d = 1

v̂3 =

√
6

4


1

− 1√
3

− 1√
3

1

 (24)

For λ4 = −3ℏ
2

b = −
√
3

3
√
3ℏ
2

=

√
3ℏ
2

+ ℏc

c =
√
3

−3ℏ
2
d =

√
3ℏ
2

√
3

d = −1

v̂4 =
1

2
√
2


1

−
√
3√
3

−1

 (25)

For Sy the process is very similar, you should get
0 −i

√
3ℏ
2

0 0

i
√
3ℏ
2

0 −iℏ 0

0 iℏ 0 −i
√
3ℏ
2

0 0 i
√
3ℏ
2

0



a
b
c
d

 =


−i

√
3ℏ
2
b

i
√
3ℏ
2
a− iℏc

iℏb− i
√
3ℏ
2
d

i
√
3ℏ
2
c

 (26)

λn


a
b
c
d

 =


−i

√
3ℏ
2
b

i
√
3ℏ
2
a− iℏc

iℏb− i
√
3ℏ
2
d

i
√
3ℏ
2
c

 (27)

Picking a = 1 again, starting with λ1 (I have left ℏ out, since it’s a constant factor that everything
is multiplied by):

3

2
= −i

√
3

2
b

b = i
√
3

i3
√
3

2
= i

√
3

2
− ic
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c =
√
3

3

2
d = i

√
3

2

√
3

d = i

v̂1 =
1

2
√
2


1

i
√
3√
3
i

 (28)

Remember to take the complex conjugate when calculating the length of the vector in order to
normalise it. For λ2 =

ℏ
2
:

1

2
= −i

√
3

2
b

b =
i√
3

i

2
√
3
= i

√
3

2
− ic

c =
1√
3

1

2
d = i

√
3

2
√
3

d = i

v̂2 =

√
6

4


1
i√
3
1√
3

i

 (29)

For λ3 = −ℏ
2

−1

2
= −i

√
3

2
b

b = − i√
3

i

2
√
3
=

i
√
3

2
− ic

c =
1√
3

−d

2
= i

√
3

2

1√
3

d = −i
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v̂3 =

√
6

4


1

− i√
3

1√
3

−i

 (30)

For λ4 = −3ℏ
2
:

−3

2
= −i

√
3

2
b

b = −i
√
3

i
3
√
3

2
= i

√
3

2
− ic

c = −
√
3

−3d

2
= −i

√
3

2

√
3

d = i

v̂4 =
1

2
√
2


1

−i
√
3

−
√
3

i

 (31)

f) [1.5pt.] The
∣∣3
2
3
2

〉
state can be decomposed into the eigenspinors of Sx (or Sy) using∣∣∣∣32 32

〉
= c1χ

(x)
1 + c2χ

(x)
2 + c3χ

(x)
3 + c4χ

(x)
4 , (32)

where χ
(x)
n are the eigenspinors of Sx for the eigenvalues λn. What are the constants cn? Check if∑

|cn|2 = 1. If you didn’t get an answer in e) you can use:

χ1 =


1√
2√
2
1

 χ2 =


1
1√
2

− 1√
2

−1

 χ3 =


1

− 1√
2

− 1√
2

1

 χ4 =


1

−
√
2√
2

−1

 , (33)

note that these spinors are not normalised.

∣∣∣∣32 32
〉

=


1
0
0
0

 (34)
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Note that these are not technically the same thing, the vector is just a representation of the spin
state.
The

∣∣3
2
3
2

〉
state is a linear combination of the eigenspinors of Sx (or Sy), so

1
0
0
0

 = c1χ1 + c2χ2 + c3χ3 + c4χ4. (35)

We can multiply by the vector representation of
〈
3
2
3
2

∣∣ to find the coefficients:

(
1 0 0 0

)
1
0
0
0

 =
n∑
i

cn

(
1 0 0 0

)
χn = 1. (36)

So
cn =

(
1 0 0 0

)
χn, (37)

c1 =
1

2
√
2

c2 =

√
6

4

c3 =

√
6

4

c4 =
1

2
√
2

The solution for the eigenspinors of Sy is the same, since the first component of the eigenspinors
is the same as those of Sx. For the eigenspinors given in the question the normalisation constants
are

1√
6

for the 1st and 4th eigenspinors, and
1√
3

for the 2nd and 3rd eigenspinors.
Now we need to check that the sum of |cn|2 is 1. For Sx and Sy:

n∑
i

|cn|2 = 2

(
1

2
√
2

)2

+ 2

(√
6

4

)2

=
2

8
+

2 · 6
16

= 1 (38)

For the eigenspinors given in the question:
n∑
i

|cn|2 = 2

(
1√
6

)2

+ 2

(
1√
3

)2

=
2

6
+

2

3
= 1 (39)

Grade ∈ {1, 4, 7, 10}.
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