
Quantum Physics 1 - Homework 8
Due on Mon Oct 31, 11:59AM

1. Energy Spectrum of the Hellmann Potential [4 × 1pt = 4pt.]

In the lecture and the book, the energy spectrum of the Hydrogen atom is derived analytically.
Although the Hydrogen atom may be considered as one of the simplest physical systems, it is supris-
ing that the energy spectrum could be found analytically. Finding the energy spectrum for a generic
(spherically symmetric) potential is not a trivial task at all, and almost always requires complex
numerical techniques.

In the literature,1 a prototypical example of a potential for which the energy spectrum cannot be
found analytically is the Hellmann potential. This is a combination of the Coulomb potential and
the Yukawa potential:
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where the first and second term correspond to the Coulomb and Yukawa potentials.2 The parameter
β (which can be positive or negative) sets the relative importance of the Yukawa term relative to the
Coulomb term. The parameter γ, which we take to be positive always, sets the amount of ‘screening’
of the Yukawa contribution. The generalized Bohr radius is defined as a0 ≡ ℏ2/µα and energies will
be measured in terms of ϵ ≡ µα2/2ℏ2, where µ is the reduced mass of the system.3 In these units,
the energy spectrum of Hydrogen would be:
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n = − ϵ
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Instruction for the Animation

Use this link to the animation in Google Colab.4 The animation shows you the energy spectrum
of the Hellmann potential for specific values of β and γ.

• In the first dropdown, you have to choose between a Coulomb (i.e. Hydrogen) and Hellmann
(i.e. Coulomb + Yukawa) potential. When you select the former, β is set to zero and changing
the values for β and γ will not change the result. You will get the energy spectrum of hydrogen
as output.

• If you select the latter, you can choose values for β and γ, and the spectrum will be shown
as output. For comparison to the Hydrogen spectrum, use the dotted lines in the left panel.
The right panel provides a ‘zoom-in’, so that the relative positions of the energy levels can be
distinguished easily.

Questions

1J. Adamowski, Bound eigenstates of the superposition of the Coulomb and the Yukawa potentials, APS, 1985.
2For the Hydrogen atom, we would have α = e2/4πϵ0.
3In the case of Hydrogen, this would be the reduced mass of the electron-proton system.
4If the resulting web page shows the raw notebook code, click the Open with Google Colaboratory button to get the

working version in Colab.

https://drive.google.com/file/d/10UueXa48mGcPiJJJrwW2jRTWy3yDipDT/view?usp=sharing


a. Take the Coulomb (i.e. Hydrogen-like) potential and consider the spectrum . Argue that the
degeneracy of the n-th energy level is n2. Hint: for each value of ℓ, there are 2ℓ + 1 values of
m.

b. Consider the Hellmann potential (Eq. 1). Apart from the obvious limit β → 0, find a second
limit for which the Hellmann potential reduces to the Coulomb potential. By taking appropriate
values for β and γ in the simulation, check that the energy spectrum indeed approaches the
Coulomb/Hydrogen-like spectrum.

c. Take β < 0 and examine what happens with the energy spectrum relative to the Hydrogen-like
spectrum. Does β < 0 correspond to a repulsive or attractive force resulting from the Yukawa
contribution to the potential? By reasoning, find out what happens to the expectation value
⟨r⟩ of the electron for β < 0.

d. Take a generic configuration of the Hellmann potential (e.g. β = 2, γ = 0.1). Describe how
the spectrum has changed compared the Hydrogen-like spectrum. What is the degeneracy of
each energy level in this case? By comparing to (a), in what way is the Hydrogen-like spectrum
special?

2. The EPR Paradox and Bell’s Theorem [5 ×1pt = 5 pts.]

In this question, you will examine the EPR-setup. Consider the decay of neutral pion π0 at the
source S into an electron-positron pair. The π0 has spin zero, requiring the electron-positron pair to
be in the singlet configuration:

Ψ =
1√
2
(↑−↓+ − ↓−↑+), (3)

where the ± subscript refers to e±. We choose our coordinate system in such a way that the electron
and positron have their spin aligned along the z-axis. The pion decays at the source S, the electron
travels to the left, the positron to the right. The spins of the electron and positron are measured by
Alice and Bob, respectively, using spin-detectors independently oriented along unit vectors a and b.
These unit vectors make angles θa and θb with the z-axis as indicated in the schematic below (Fig.
1).

The outcomes of the spin-measurements by detectors a and b are denoted as sa = ±1 and sb = ±1.
(We omit the factor of ℏ/2 for simplicity.) The product of the spins is denoted as sab = sa × sb.
Quantum mechanics predicts the expectation value ⟨sab⟩ to depend solely on the relative orientations
of the spin detectors:

P (a, b) ≡ ⟨sab⟩ = −a · b. (4)

Instruction for the Animation

Use this link to the animation in Google Colab. The simulation allows you to choose the orientation
of the two spin-detectors via θa and θb. In the simulated experiment, we examine N pion-decays
and measure the spins of the electron and positron in each case: you can set the value of N . The
output of the simulation is a list of N rows and 3 columns (sa, sb and sab): this is option can
be toggled on and off. Based on this list, an estimate of the expectation value ⟨sab⟩ is calculated
and given as well. Lastly, a bar-chart shows the relative occurrence of the four possible measurement
outcomes (↓↓, ↓↑, ↑↓ and ↑↑). You can double-click the gray button to redo the simulated experiment.

Questions
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https://drive.google.com/file/d/10OwmPyuUC1LhIjbv51KZZUb_mID6-KUM/view?usp=sharing


Figure 1: The EPR setup.

a. For what choice(s) of θa and θb will the product sab always give the same value? What is this
value? Explain briefly.

b. Einstein, Podolsky and Rosen (EPR) considered the setup in (a) to be based on (unsatisfactory)
spooky action on a distance. Explain why, and make sure to use the term locality in your answer.

Suppose that Alice measures first and then Bob, the orientations of the two detectors are arbitrary.

c. What is the probability that Alice measures spin up or spin down as measured along unit vector
a?

d. Given are the following two choices for probabilities:

P1 = sin2
(θa − θb

2

)
, P2 = cos2

(θa − θb
2

)
(5)

Given that Alice measures spin up, which of the above two expressions P1,2 is the probability
that Bob measures spin up as well? Briefly explain why.

EPR argued that quantum-mechanics could not be the whole story, and that a local hidden variable
theory was the correct description instead. However, Bell showed that for any local hidden variable
theory the Bell inequality must hold:

|P (a, b)− P (a, c)| ≤ 1 + P (b, c). (6)

e. Find and sketch an orientation of the unit vectors a, b and c that violates Bell’s inequality and
therefore rules out local hidden variable theories. Check with the simulation!

Grade = your points+1.
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