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Final Exam Quantum Physics 1 – 2024/2025 
Wednesday, October 30, 2024, 18:15 – 20:15 

Read these instructions carefully. If you do not follow them your exam might be (partially) voided. 

• This exam consists of 3 questions in 2 pages and a formula sheet at the end. 
• The points for each question are indicated on the left side of the page. 
• You have 2 hours to complete this exam. 
• Write your name and student number on all answer sheets that you turn in. 
• Start answering each exercise on a new page. It is ok to use front and back. 
• Clearly write the total number of answer sheets that you turn in on the first page. 
• Telephones, smart devices, and other electronic devices are NOT allowed. 
• This is a closed book exam. Consulting reading material is not allowed. 

 

Question 1 
Assume a double well as sketched below. The ground states of each well, if isolated as with a large 

barrier in between, are |𝜙𝜙𝐿𝐿⟩ → �1
0� and |𝜙𝜙𝑅𝑅⟩ → �0

1�. In this basis, the Hamiltonian describing the 

coupled well is given by the matrix elements �𝜙𝜙𝐿𝐿�𝐻𝐻��𝜙𝜙𝐿𝐿� = �𝜙𝜙𝑅𝑅�𝐻𝐻��𝜙𝜙𝑅𝑅� = 𝜀𝜀, and �𝜙𝜙𝑅𝑅�𝐻𝐻��𝜙𝜙𝐿𝐿� =
�𝜙𝜙𝐿𝐿�𝐻𝐻��𝜙𝜙𝑅𝑅� = 𝑇𝑇, where 𝜀𝜀 is a positive constant and 𝑇𝑇 is a negative constant. 

 

 

 

 

 

 

 

a) Explicitly write the matrix for the Hamiltonian and express the eigenstates as linear combinations 
of |𝜙𝜙𝐿𝐿⟩ and |𝜙𝜙𝑅𝑅⟩. What are the eigenvalues? Which eigenstate corresponds to the ground state? 

b) What is the result of operator  𝑃𝑃� = |𝜙𝜙𝐿𝐿⟩⟨𝜙𝜙𝑅𝑅| + |𝜙𝜙𝑅𝑅⟩⟨𝜙𝜙𝐿𝐿| on the eigenstates of the Hamiltonian? 
Write down the matrix corresponding to this operator in the basis of |𝜙𝜙𝐿𝐿⟩ and |𝜙𝜙𝑅𝑅⟩. Does this 
operator commute with the Hamiltonian? Prove that explicitly or argue why/why not. 

c) Using a special experimental apparatus, we can make a measurement and know if it is on the left 

or right side of the well. This measurement is described by the operator 𝐴̂𝐴 → �−𝑎𝑎 0
0 𝑎𝑎�. We have 

performed a measurement of 𝐴̂𝐴 and found −𝑎𝑎. What is the state of the system just after this 
measurement? Find how the time-dependence of the expectation value of 𝐴̂𝐴. Hint: What is |𝜙𝜙𝐿𝐿⟩ 
expressed in terms of the ground and excited state of the double well? 

d) Consider now that you place two electrons in the double well and let the system relax to the 
ground state. Use symmetry arguments to write down the total quantum state, including spin, of this 
two-electron system and explain why it is the correct state. 
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Question 2 
For this question, consider an electron subject to the infinite square well potential: 

𝑉𝑉(𝑥𝑥) = �   0,       for    0 < 𝑥𝑥 < 𝑎𝑎
 ∞,            otherwise , where 𝑎𝑎 is a positive constant. 

a) Solve the Schrodinger equation to show that the eigenstates and eigenenergies of this system 

are, respectively, 𝜓𝜓𝑛𝑛 = �2
𝑎𝑎

sin(𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎⁄ ) and 𝐸𝐸𝑛𝑛 = 𝑛𝑛2𝜋𝜋2ℏ2
2𝑚𝑚𝑎𝑎2� , with 𝑛𝑛 = 1, 2, 3, … . Explicitly 

mention the boundary conditions you use to solve the differential equation and be clear in all the 
steps you take towards the solution. Do not worry about the normalization. 

b) What are the expectation values for position and momentum for the ground state of this 
system? You can either do the calculation explicitly or state the final result and argue clearly why 
this is the answer. 

c) Do the expectation values in calculated in (b) change in time? Here you can also either do an 
explicit calculation or support your statement with a clear argument. 

d) We prepare the particle at the ground state of the well and suddenly double the well width, with 
the new well extending from 𝑥𝑥 = 0 until 𝑥𝑥 = 2𝑎𝑎. State the new energy eigenstates and 
eigenenergies. 

e) Find the time-dependent wavefunction with the initial state prepared as described in (d). Hint: 
You can express Ψ(𝑥𝑥, 𝑡𝑡) as an infinite sum, indicating how the coefficients can be calculated 
without the need of solving the integrals. 

Question 3 
This question is about quantum angular momentum, both orbital and spin. 
a) Using the canonical commutation relations to show that: [𝐿𝐿𝑧𝑧 , 𝑥𝑥] = 𝑖𝑖ℏ 𝑦𝑦. 
b) The spherical harmonics are eigenfunctions of the operator 𝐿𝐿𝑧𝑧. The eigenfunction for 𝑙𝑙 = 1 with 

corresponding 𝑚𝑚𝑙𝑙 = 0 is given by 𝑌𝑌10(𝜃𝜃,𝜙𝜙) = � 3
4𝜋𝜋
�
1/2

cos(𝜃𝜃). 

Using the definition for the operators 𝐿𝐿± = 𝐿𝐿𝑥𝑥 ± 𝑖𝑖𝐿𝐿𝑦𝑦 and the eigenfunction above find the other 
eigenfunctions corresponding to the same value of 𝑙𝑙. 
Tip: The operators 𝐿𝐿𝑥𝑥,𝑦𝑦,𝑧𝑧 are given in the formula sheet below.  

We will now discuss spin angular momentum.  

c) Using a Stern-Gerlach apparatus you measure the state of a spin ½ particle with the axis of the 
apparatus at an angle 𝜃𝜃 with respect to the z axis. What are the possible values for the 
measurements of the spin in this axis? 

The state of the “upper” branch coming from the apparatus above |𝜓𝜓⟩ can be written as: 

|𝜓𝜓⟩ = cos �𝜃𝜃
2
� |↑⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖 sin �𝜃𝜃

2
� |↓⟩, 

where |↑⟩ and |↓⟩ are the eigenstates of 𝑆𝑆𝑧𝑧 with eigenvalues + ℏ
2
 and −ℏ

2
, respectively, 𝜃𝜃 is the polar 

angle (angle with the z axis) and 𝜙𝜙 the azimuthal angle (angle in the xy plane and with respect to the 
x axis). 

d) Show that the state |𝜓𝜓⟩ above is normalized for any angle 𝜃𝜃 or 𝜙𝜙.  
e) Assume that the Stern-Gerlach apparatus is set at angles 𝜃𝜃 = 60° and 𝜙𝜙 = 0°. You take the 

“upper” branch of this measurement (i.e. you take |𝜓𝜓⟩) and do a measurement of the z 
component of the spin angular momentum. What are the possible outcomes and with which 
probabilities?  
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Useful formulas: 

Schrodinger equation    𝑖𝑖ℏ 𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= 𝐻𝐻Ψ 

Time-independent Schrodinger equation 𝐻𝐻𝐻𝐻 = 𝐸𝐸𝐸𝐸 Ψ = ψ𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ 

Hamiltonian operator    𝐻𝐻 = − ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉 

Momentum operator    𝑝𝑝 = −𝑖𝑖ℏ ∇ 

De Broglie wavelength    𝜆𝜆 = ℎ/𝑝𝑝 

Time-dependence of expectation value  𝑑𝑑〈𝑄𝑄〉
𝑑𝑑𝑑𝑑

= 𝑖𝑖
ℏ
〈[𝐻𝐻,𝑄𝑄]〉 + 〈𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
〉 

Generalized uncertainty principle  𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵 ≥ � 1
2𝑖𝑖
〈[𝐴𝐴,𝐵𝐵]〉� 

Heisenberg Uncertainty principle  𝜎𝜎𝑥𝑥𝜎𝜎𝑝𝑝 ≥ ℏ/2 

Canonical commutator    [𝑥𝑥,𝑝𝑝] = 𝑖𝑖ℏ 

Angular momentum    𝐿𝐿�⃗ = 𝑟𝑟 × 𝑝⃗𝑝 

�𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦� = 𝑖𝑖ℏ𝐿𝐿𝑧𝑧  ;   �𝐿𝐿𝑦𝑦 , 𝐿𝐿𝑧𝑧� = 𝑖𝑖ℏ𝐿𝐿𝑥𝑥   ;   [𝐿𝐿𝑧𝑧, 𝐿𝐿𝑥𝑥] = 𝑖𝑖ℏ𝐿𝐿𝑦𝑦 

  In spherical coordinates: 𝐿𝐿𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕 𝜕𝜕𝜕𝜕�  

      𝐿𝐿𝑥𝑥 = −𝑖𝑖ℏ �− sin𝜙𝜙  𝜕𝜕 𝜕𝜕𝜕𝜕� − cos𝜙𝜙 cot𝜃𝜃 𝜕𝜕 𝜕𝜕𝜕𝜕� � 

      𝐿𝐿𝑦𝑦 = −𝑖𝑖ℏ �+ cos𝜙𝜙  𝜕𝜕 𝜕𝜕𝜕𝜕� − sin𝜙𝜙 cot 𝜃𝜃 𝜕𝜕 𝜕𝜕𝜕𝜕� � 

Pauli matrices     𝜎𝜎𝑥𝑥 = �0 1
1 0�    ;    𝜎𝜎𝑦𝑦 = �0 −𝑖𝑖

𝑖𝑖 0 �    ;    𝜎𝜎𝑧𝑧 = �1 0
0 −1� 

Trigonometric relations 

sin(𝑎𝑎 ± 𝑏𝑏) = sin(𝑎𝑎) cos(𝑏𝑏) ± cos(𝑎𝑎) sin(𝑏𝑏) 

cos(𝑎𝑎 ± 𝑏𝑏) = cos(𝑎𝑎) cos(𝑏𝑏) ∓ sin(𝑎𝑎) sin(𝑏𝑏) 

Useful integrals 

�𝑥𝑥 sin2(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = �
1

8𝑎𝑎2
� {−2𝑎𝑎𝑎𝑎[sin(2𝑎𝑎𝑎𝑎) − 𝑎𝑎𝑎𝑎] + cos(2𝑎𝑎𝑎𝑎)} 

� sin(𝑎𝑎𝑎𝑎) cos(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = −
cos2(𝑎𝑎𝑎𝑎)

2𝑎𝑎
 


