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Electricity and Magnetism, Test 1 Feb 21 2025 18:30-20:30 

4 problems, 34 points (and 2 bonus points) 

 

 

Problem 1. Conceptual questions (10 points; 2 points each) Average 6.6 (66%) 

In all cases, explain your answers (if needed, with calculations) 

A. A negative point charge moves along a circular orbit around a positive point charge. What 

aspect(s) of the electric force on the negative point charge will remain constant in the 

Cartesian coordinates as it moves?  

(i). Magnitude 

(ii). Direction 

(iii). Both magnitude and direction 

(iv). Neither magnitude nor direction 

 

Answer: (i) the magnitude remains constant (the separation remains the same) but the 

direction changes (directed towards the positive charge) 

Typical mistakes: not reading the part about using cartesian coordinates, and assuming 

spherical 

 

B. Is this a possible electrostatic field (𝑘 is a nonzero constant)?  

𝐄⃗ = 𝑘(𝑥𝑦𝐱̂ + 2𝑦𝑧𝐲̂ + 3𝑥𝑧𝐳̂) 

Answer: No because 𝛁⃗⃗ × 𝐄⃗ ≠ 0 

𝛁⃗⃗ × 𝐄⃗ = ||

𝐱̂ 𝐲̂ 𝐳̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

|| = 𝐱̂ [
𝜕

𝜕𝑦
(3𝑥𝑧) −

𝜕

𝜕𝑧
(2𝑦𝑧)] + ⋯ = 𝐱̂[0 − 2𝑦] ≠ 0 

Write your name and student number on each answer sheet. Use of a calculator is allowed. You 

may make use of one A4 (double sided) with handwritten notes and of the provided formula 

sheet. The same notation is used as in the book, i.e. a bold-face 𝐀⃗⃗  is a vector, 𝐱̂ is the unit vector 

into the 𝑥-direction. In your handwritten answers, remember to indicate vectors (unit vectors) 

with an arrow (hat) above the symbol. 
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Typical mistakes: Calculated divergence instead of curl. 

 

C. For what kind of surface is Gauss's law valid? 

(i) Any closed surface 

(ii) Closed surfaces that match the symmetry of the problem 

(iii) Any kind of surface 

 

Answer: (i) Gauss’s law does not impose any restrictions on the shape of the closed surface. 

Choosing a surface that matches the symmetry of the problem (ii), is a matter of convenience 

for calculations, not a limitation of Gauss’s law. The surface must be closed, which excludes 

(iii). 

Typical mistakes: Thinking symmetry is required 

 

D. Electric field is a vector quantity while the potential is a scalar. How come that a scalar 

contains all the information about a vector? 

Answer: because 𝐄⃗  is a conservative field (𝛁⃗⃗ × 𝐄⃗ = 0) so its components are not 

independent. 

Typical mistakes: Just giving relation between 𝐄⃗  is the gradient of V.  

 

E. Three identical point charges 𝑞 are arranged in 

two different configurations: (i) at the vertices of 

an equilateral triangle with side length 𝑎, and (ii) 

in a straight line, with each charge separated by a 

distance 𝑎 (see the figure). Which configuration 

has a higher electrostatic potential energy? 

Answer:  

(i): 𝑊 =
1

8𝜋𝜖0

3𝑞2

𝑎
 

(ii): 𝑊 =
1

8𝜋𝜖0
(
2𝑞2

𝑎
+

𝑞2

2𝑎
) =

1

8𝜋𝜖0

2.5𝑞2

𝑎
 

The energy is higher in the first configuration. 

An alternative answer: In the first configuration (triangle), the distance between each charge 

is shorter than in the second configuration (line). According to the equation for work, this 

suggests that the energy is higher in the first configuration. 

Typical mistakes:  

(i) Mixing potential and electrostatic potential energy (even though we explicitly discussed 

the difference during lectures) 

(ii) Counting the lines between the charges as the reasoning for the triangle having higher 

energy (i.e. there are 3 lines in a triangle compared to 2 on a straight line) 
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Problem 2. Charged spheres (6 points) Average 4 (67%) 

You have a system of 3 concentric spherical shells with radii 𝑅1, 

𝑅2 and 𝑅3, each of which carries uniformly-distributed charges 

+𝑄, +𝑄 and −2𝑄, respectively (see the figure). Find the electric 

field in the four regions marked as A, B, C and D. 

  

Answers: 

Because of spherical symmetry, we choose Gaussian’s surfaces as shells with their centra at 

the origin 

∮𝐄⃗ ∙ 𝑑𝐚⃗ =
1

𝜖0
𝑄𝑒𝑛𝑐  (2 points) 

Region A: 𝑄𝑒𝑛𝑐 = 0, 𝐄⃗ = 0   (1 point) 

Region B: 𝐸 4𝜋𝑟2 = 𝑄𝑒𝑛𝑐 = +𝑄, 𝐄⃗ (𝐫 ) =
1

4𝜋𝜖𝑜

𝑄

𝑟2
𝐫̂   (1 point) 

Region C: 𝐸 4𝜋𝑟2 = 𝑄𝑒𝑛𝑐 = +2𝑄, 𝐄⃗ (𝐫 ) =
1

4𝜋𝜖𝑜

2𝑄

𝑟2
𝐫̂   (1 point) 

Region D: 𝑄𝑒𝑛𝑐 = 0, 𝐄⃗ = 0   (1 point) 

Typical mistakes:  

(i) Not writing out the Gauss law or using the wrong Gaussian surfaces. 

(ii) Not realizing Gaussian surface has variable r and using the radius of the circles R_1, R_2, 

and R_3 as the distance variable instead of the correct r  

(iii) Forgetting the direction vector 𝐫̂.  

(iv) Using infinite plane arguments to get the electric field pointing both in and out of the 

shells 

(v) Not realizing that in D, the charges cancel out perfectly 

 

Problem 3. Electric field of a charged object  (10 points + 2 bonus)  

Average 6.6 (66% bonus excluded) 

A flat, infinitely thin circular disk of radius 𝑅 (see the figure) 

carries a uniform positive surface charge density 𝜎. 

1. Sketch qualitatively the 𝑧-component of the electric field as a 

function of 𝑧 above the center of the disk. Include both negative 

and positive 𝑧 on your horizontal axis, and  briefly explain 𝑧-

dependences at 𝑧 ≪ 𝑅 and 𝑧 ≫ 𝑅. (4 points) 

Tip: be careful at 𝑧 = 0 

2. Now directly calculate the electric field at a distance 𝑧 above the center of the disk. (4 

points) 

Tip: You may use this integral (but may not need to): 
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∫
𝑟

(𝑟2 + 𝑧2)3/2
  𝑑𝑟 = −

1

√𝑟2 + 𝑧2
+ 𝑐𝑜𝑛𝑠𝑡 

3. Give an expression for the three-dimensional volume charge density 𝜌 in this problem. (2 

points) 

Tip: use Dirac’s delta-function 

4. Bonus question: What does the formula calculated in (2), give in the limit 𝑧 ≫ 𝑅 (but not 

𝑧 → ∞ which is trivial)? Explain why it makes sense. (2 points) 

Tip: you may find the following expression useful: √1 + 𝑥 ≅ 1 + 𝑥 2⁄  for 𝑥 ≪ 1 

  

 

Answers: 

1. The electric field component 𝐸𝑧 should be positive 

for 𝑧 > 0 and negative for 𝑧 < 0, indicating that the 

field points away from the disk for a positively 

charged surface. (2 points) 

For 𝑧 ≪ 𝑅, the disk appears infinitely large so that the 

field should behave similarly to that of an infinite 

plane of charge: 

𝐄⃗ (𝑧 ≪ 𝑅) =
𝜎 

2𝜖𝑜
𝐳̂ = const (1 point)  

At large distances, the specific configuration of a charged object with the finite size becomes 

irrelevant, as it effectively behaves like a point charge. Therefore, the behaviour is 

𝐄⃗ =
𝜎𝜋𝑅2

4𝜋𝜖𝑜𝑧2
 𝐳̂ ∝  

1

𝑧2
𝐳̂         (1 point) 

 

2. From the symmetry of the problem it is clear that the electric field has only a component 

along 𝑧 as the in-plane components will be compensated by the same charge from a 

symmetric position with respect to the disk axis. Therefore, we need to calculate only the 𝑧-

component (1 point) 

Note: if a learner calculates the r-component directly, it also counts as 1 point 

We use the cylindrical system of coordinates: (1 point for the 

correct model)  

𝓇2 = 𝑟2 + 𝑧2;  𝑐𝑜𝑠𝜃 =
𝑧

√𝑟2 + 𝑧2
 

𝐄⃗ =
𝐳̂

4𝜋𝜖𝑜
∫

𝜎

𝑟2 + 𝑧2
𝑐𝑜𝑠𝜃  𝑟 𝑑𝑟 𝑑𝜑

=
𝐳̂

4𝜋𝜖𝑜
∫

𝜎

𝑟2 + 𝑧2
 

𝑧

√𝑟2 + 𝑧2
𝑟 𝑑𝑟

𝑅

0

∫ 𝑑𝜑

2𝜋

0
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=
𝜎𝑧 𝐳̂

4𝜋𝜖𝑜
2𝜋 ∫

𝑟

(𝑟2 + 𝑧2)
3
2

  𝑑𝑟

𝑅

0

=
𝜎𝑧 𝐳̂

4𝜋𝜖𝑜
2𝜋 (−

1

√𝑟2 + 𝑧2
)|

0

𝑅

 

=
2𝜋𝜎

4𝜋𝜖𝑜
𝑧 (

1

|𝑧|
−

1

√𝑅2 + 𝑧2
) 𝐳̂  =

𝜎

2𝜖𝑜
(sign(𝑧) −

𝑧

√𝑅2 + 𝑧2
) 𝐳̂ (4 points) 

Absence of the modulus around 𝑧 does not result in any penalty if the direction of 𝐄⃗  is 

specified, either on graph or in words. The last step in simplification is not compulsory either. 

If the direction of 𝐄⃗  is not specified (either as 𝐳̂ or in words or in graph), -1 point 

 

An alternative approach is if the learner breaks the disk into rings of radius 𝑟 and width 𝑑𝑟, 

and uses a known expression (calculated at tutorials) for the field of the ring 

𝐄⃗ 𝑟𝑖𝑛𝑔 =
1 

4𝜋𝜖𝑜

𝑧 

(𝑟2 + 𝑧2)3/2
𝜎2𝜋𝑟𝑑𝑟 (= 𝑑𝑄)𝐳̂ 

𝐄⃗ =
1 

4𝜋𝜖𝑜
2𝜋𝜎𝑧 ∫

𝑟 

(𝑟2 + 𝑧2)3/2
𝑑𝑟

𝑅

0

𝐳̂ =
𝜎 

2𝜖𝑜
𝑧 [

1

|𝑧|
−

1

√𝑅2 + 𝑧2
] 𝐳̂ 

The same number of points should be awarded as before 

 

3. 𝜌(𝑟, 𝑧) = {
𝜎 𝛿(𝑧) for 𝑟 < 𝑅
0            for 𝑟 < 𝑅

    (2 points) 

Or using the Heaviside step function, 𝜌 = 𝜎𝜃(𝑅 − 𝑟)𝛿(𝑧) 

 

4. |𝐄⃗ | =
𝜎 

2𝜖𝑜
[1 −

1

√(𝑅 𝑧⁄ )2 + 1
] ≅

𝜎 

2𝜖𝑜
[1 − (1 −

1

2
(
𝑅

𝑧
)
2

)] =
𝜎 

4𝜖𝑜

𝑅2

𝑧2
=

1 

4𝜋𝜖𝑜

𝜎𝜋𝑅2

𝑧2
=

=
1 

4𝜋𝜖𝑜

𝑄

𝑧2
, where 𝑄 = 𝜎𝜋𝑅2 (2 bonus points) 

i.e. exactly Coulomb’s law as it should be 

(for the bonus, the expansion of the field must be carried out explicitly; just writing 

Coulomb’s law does not qualify) 

Typical mistakes:  

(i) Many students thought the electric field would go to 0 at z=0 (as it was the case in the last-

year test 1) -- even though it was explicitly mentioned in the tip, and I, noticing many wrong 

answers during the test, made an announcement about it 

(ii) Forgetting the cosine in (2) or forgetting how to evaluate the integral at the bounds (many 

forgot to plug in 𝑟 = 0 – although it might help raise some concerns about the correctness of 

the answer to the first sub-question). 
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Problem 4. Potential (8 points)  Average 6.6 (60%) 

Two infinitely thin, nonconducting straight rods with 

length 2𝐿 meet at a right angle (but don’t touch each other; 

see the figure). The rods carry charges +𝑄 and −𝑄 

distributed uniformly along their lengths. Your observation 

point 𝑃 is situated at the distance 𝐿 from each rod as 

shown.  

1. Find the potential one rod produces at point 𝑃 (6 points) 

Tip: you may find the following integral useful: 

∫
1

(𝐿2 + 𝑥2)1/2
𝑑𝑥 = ln (𝑥 + √𝐿2 + 𝑥2) + 𝑐𝑜𝑛𝑠𝑡 

2. Find the potential both rods produce at point 𝑃 (2 points) 

Note that you do not need to know the exact answer to (1) to answer (2) 

 

Answers: 

1. This is similar to Problem 2.25 (2.26) considered at tutorials (6 points) 

For the positively − charged rod, 𝜆 =
𝑄

2𝐿
 

𝑉+ =
1

4𝜋𝜖𝑜
∫

𝜆

√𝐿2 + 𝑥2
𝑑𝑥

𝐿

−𝐿

=
𝜆 

4𝜋𝜖𝑜
[ln (𝑥 + √𝐿2 + 𝑥2)] |

𝐿
−𝐿

 

=
𝜆 

4𝜋𝜖𝑜
[ln (𝐿 + √𝐿2 + 𝐿2) − ln (−𝐿 + √𝐿2 + 𝐿2)] 

=
𝜆 

4𝜋𝜖𝑜
ln (

1 + √2

−1 + √2
) =

𝜆 

4𝜋𝜖𝑜
ln (

(1 + √2)
2

(−1 + √2)(1 + √2)
) =

𝜆 

2𝜋𝜖𝑜
ln (

1 + √2

2 − 1
) 

𝑉+ =
1 

2𝜋𝜖𝑜

𝑄

2𝐿
ln(1 + √2) 

Notice the neat simplification - it’s always a nice touch! No points deducted if the learner 

chooses not to apply it. 

2. The total potential is the sum of the two potentials which are of the same magnitude but 

opposite signs: 

𝑉 = 𝑉+ + 𝑉− = 0 (2 points) 

Without knowing the answer to #1: the system exhibits symmetry with respect to the line that 

starts at the intersection of the rods and passes through point 𝑃. Consequently, the potentials 

generated by each rod are equal in magnitude but opposite in sign. Since potentials are 

additive, the total result is zero. (the same 2 points) 

Typical mistakes:  

(i) Students thought the potential is a vector 

(ii) Some first found the electric field and then integrated it to find the potential but all the 

integrals were incorrect 



7 
 

(iii) Some in order to find the field, used Gauss law despite the lack of symmetry at the ends 

of the rod 

(iv) Some did not define the value of the line charge density so they just used λ even though 

that was not given in the problem formulation 

(v) Some students integrated from 0 to 2L without realising that if the origin is at the end of 

the rod, the potential takes a different expression than the one needed to use the hint for the 

integral 


