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Electricity and Magnetism, Test 3 April 8 2024 18:15-20:15 

4 problems, 43 points + 2 bonus points 

 

 

Problem 1. Conceptual questions (12 points; 2 points for each) 

In all cases, explain your answers!  

A. In Ampère's law formulation, we are 

talking about the currents (the right-hand side 

of the equation), “enclosed” into the 

integration loop (the left-hand side). Which 

of the following currents 𝐼1 − 𝐼3, enclosed by 

paths 𝐶1, 𝐶2 and 𝐶3, respectively, result in a 

non-zero enclosed current? 

Answers: we imagine a “membrane” with the 

boundary at the integration path. The currents 

must pierce the membrane, and their directions 

also count. 𝐼2 pierces the membrane in 

opposite direction, hence 𝐼2
𝑒𝑛𝑐𝑙 = 0.  

So the answer is: 𝐼1and 𝐼3 

 

B. Could the field given by the following expression, be a magnetic field? (𝑎 and 𝑏 are 

constants): 𝐁⃗⃗ (𝑥, 𝑦) = 𝑎 cos(𝑏𝑥) 𝐱̂ + 𝑎𝑏𝑦 sin(𝑏𝑥) 𝐲̂ 

Write your name and student number on each answer sheet. Use of a calculator is allowed. You 

may make use of one A4 (double sided) with handwritten notes and of the provided formula 

sheet. The same notation is used as in the book, i.e. a bold-face 𝐀⃗⃗  is a vector, 𝐱̂ is the unit vector 

into the 𝑥-direction. In your handwritten answers, remember to indicate vectors (unit vectors) 

with an arrow (hat) above the symbol. 
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Answer: let’s calculate 𝛁⃗⃗ ∙ 𝐁⃗⃗ (𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝑎 cos(𝑏𝑥)) +

𝜕

𝜕𝑦
(𝑎𝑏𝑦 sin(𝑏𝑥)) = −𝑎𝑏 sin(𝑏𝑥) +

𝑎𝑏 sin(𝑏𝑥) = 0 as it should be for a magnetic field.  

So the answer: yes, it could. 

 

Typical mistakes: 

Using the dipole expansion to reason why the field is possible 

Not knowing how to calculate the divergence of a vector field  

Note by MP: much to my surprise, this appears to be quite difficult for the students – only 

40% did it right. 𝛁⃗⃗ ∙ 𝐁⃗⃗  is always zero (no magnetic monopoles)! 

 

C. A current 𝐼 flows to the right through a rectangular 

bar of conducting material, in the presence of a uniform 

magnetic field 𝐁⃗⃗  (see the figure). If the moving charges 

are positive, in which direction are they deflected by 

the magnetic field?  

Answer: (Problem 5.41) the Lorentz force 𝐅 𝑚𝑎𝑔 = 𝑄(𝐯⃗ × 𝐁⃗⃗ ) and the positive charges flow 

to the right (with the current direction): they will be deflected down 

 

D. Which of the following operations on the vector potential 𝐀⃗⃗  will not change the magnetic 

field: 

- Adding a vector constant to 𝐀⃗⃗  

- Adding a divergence of a vector function to 𝐀⃗⃗  

- Adding a gradient of a scalar function to 𝐀⃗⃗  

Answers: a divergence is a scalar so adding it to a vector does not make sense (regardless the 

vector potential). The other two operations are ok:  

Adding a vector constant will not change the magnetic field because of a differential operator 

(curl) 

𝐁⃗⃗ ′ = 𝛁⃗⃗ × 𝐀⃗⃗ ′ = 𝛁⃗⃗ × 𝐀⃗⃗ + 𝛁⃗⃗ × 𝛁⃗⃗ λ = [𝑟𝑢𝑙𝑒 #10: 𝛁⃗⃗ × 𝛁⃗⃗ λ = 0] = 𝛁⃗⃗ × 𝐀⃗⃗ = 𝐁⃗⃗  

 

Typical mistakes: 

Not realizing that divergence of a vector field is a scalar function and can’t be added to a 

vector field (or one can’t calculate curl of a scalar function)  

Not realizing that gradient of a scalar function is curl free  

Note by MP: another problematic question with 43% success rate even though we discussed 

all but the second option in the lecture. 
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E. Which of the materials from the table below are attracted to a magnet pole where the 

magnetic field is non-uniform? 

Material 𝜒𝑚 

Gadolinium 5 × 10−1 

Sodium 8.5 × 10−6 

Copper −9.7 × 10−6 

Bismuth −1.7 × 10−4 

Answers: paramagnetics are attracted into a stronger magnetic field. For them, 𝜒𝑚 > 0 so 

gadolinium and sodium (the other two are diamagnetics) 

F. You have a permanent magnet which you would like to de-magnetized (i.e. convert it to a 

non-magnet). How do you do it? 

Answers: there are two ways (either is good as an answer) 

1. Apply an external magnetic field that creates magnetization 

with a direction opposite to that of the magnet. Then increase a 

magnetic field until the magnet is de-magnetized (points d or g 

in the hysteresis loop) 

2. Heat it up to the Curie point – the magnetization will be lost due to a phase transition to a 

paramagnet (= no permanent magnetization) 

 

Problem 2 Bio-Savart law (15 points + 2 bonus points) 

(example 5.6 and problem 5.11)  

We will calculate the magnetic field on the 

axis of a tightly wound, finite-length 

solenoid consisting of n turns per unit 

length wrapped around a cylindrical tube of 

radius R and carrying current I (see the 

figure). 

A. First, calculate the magnetic field a distance 𝑧 from the center of a circular loop of radius 

𝑅, which carries a steady current 𝐼, and show that  

𝐵𝑧(𝑧) =
𝜇0𝐼

2

𝑅2

(𝑅2 + 𝑧2)3 2⁄
 (3 points) 

B. Now find the magnetic field on the axis of the solenoid. Consider the turns to be 

essentially circular, and use the previous result. Express your answer in terms of 𝜃1 and 𝜃2 

(5 points) 

Tip: you may (or may not) find the following integral useful 

∫
𝑑𝑥

(𝑎2 + 𝑥2)3 2⁄
=

1

𝑎2

𝑥

√𝑎2 + 𝑥2
+ 𝑐𝑜𝑛𝑠𝑡 

C. Sketch a plot of the magnitude of the magnetic field on the axis of the solenoid as a 

function of 𝑧. Indicate in your plot what power-law behavior results at large positive 𝑧, and 
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where the ends of the solenoid are. (You can do this question without succeeding in B) 

(5 points) 

D. What is the field on the axis of an infinite (in both directions) solenoid? (2 points) 

E. Bonus for those who calculated (B): show that your formula gives the right behavior at 

large distances (2 bonus points) 

Tip: for small 𝜃, cos 𝜃 ≈ 1 −
𝜃2

2
 

 

Answers: 

A. Example 5.6 (3 points) 

The field 𝑑𝐁⃗⃗  of the segment 𝑑𝐥 ′ is directed as shown.  

𝐁⃗⃗ (𝐫 ) =
𝜇0

4𝜋
∫

𝐈 × 𝓻̂

𝓇2
𝑑𝑙′ 

After integration around the current loop, the horizontal component 

of 𝐁⃗⃗  cancels out so we’re left with the vertical component only 

(hence, cos 𝜃 for z-projection of 𝐁⃗⃗ ). 𝓻̂ and 𝑑𝐥 ′ are orthogonal so  

𝐵𝑧(𝑧) =
𝜇0𝐼

4𝜋
∫

𝑑𝑙′

𝓇2
cos 𝜃 =

𝜇0𝐼

4𝜋

cos 𝜃

𝓇2
∫𝑑𝑙′ =

𝜇0𝐼

4𝜋

𝑅2

(𝑅2 + 𝑧2)3 2⁄
2𝜋 

=
𝜇0𝐼

2

𝑅2

(𝑅2 + 𝑧2)3 2⁄
 

(no points for a simple copy/paste from the formulation) 

 

B. Problem 5.11 (5 points) 

We substitute 𝐼 → 𝑛𝐼 𝑑𝑧 and integrate over 𝑑𝑧 

𝐵 =
𝜇0𝑛𝐼

2
∫

𝑅2

(𝑅2 + 𝑧2)3 2⁄
𝑑𝑧 

𝑅 = √𝑅2 + 𝑧2 sin 𝜃 ;
1

(𝑅2 + 𝑧2)3 2⁄
=

sin3𝜃

𝑅3
 

𝑧 = 𝑅 cot 𝜃 ; 𝑑𝑧 = −
𝑅

𝑠𝑖𝑛2𝜃
𝑑𝜃 

𝐵 =
𝜇0𝑛𝐼

2
∫𝑅2

sin3𝜃

𝑅3
(−

𝑅

𝑠𝑖𝑛2𝜃
)𝑑𝜃 = −

𝜇0𝑛𝐼

2
∫sin 𝜃 𝑑𝜃 =

𝜇0𝑛𝐼

2
cos 𝜃|𝜃1

𝜃2 

=
𝜇0𝑛𝐼

2
(cos 𝜃2 − cos 𝜃1) 

An alternative way: directly integrate over the solenoid length 2𝐿 (careful with the 

integration limits!) 

𝐵 =
𝜇0𝑛𝐼

2
∫

𝑅2

(𝑅2 + 𝑧2)3 2⁄
𝑑𝑧

𝑧+𝐿

𝑧−𝐿

=
𝜇0𝑛𝐼

2

𝑧

√𝑅2 + 𝑧2
|
𝑧−𝐿

𝑧+𝐿
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=
𝜇0𝑛𝐼

2
(

𝑧 + 𝐿

√𝑅2 + (𝑧 + 𝐿)2
−

𝑧 − 𝐿

√𝑅2 + (𝑧 − 𝐿)2
) =

𝜇0𝑛𝐼

2
(cos 𝜃2 − cos 𝜃1) 

Quick check: for an infinitely long solenoid, 𝜃2 = 0, 𝜃1 = 𝜋, so cos 𝜃2 − cos 𝜃1 = 1 −
(−1) = 2 and 𝐵 = 𝜇0𝑛𝐼 

C. The field inside is constant; the field at long distances scales as 𝑧−3 (the first non-zero 

term is a magnetic dipole)  

 

5 points if everything is correct;  

-2 points for not showing the functional behavior of the magnetic field at large distances 

-1 point if it’s shown incorrectly 

D. 𝐵 = 𝜇0𝑛𝐼 (2 points) 

No derivation is needed; the students should know it 

E. Let’s check for large distances (=small angles) (𝐿 is the solenoid half-length) 

cos 𝜃2 − cos 𝜃1 ≈ 1 −
𝜃2

2

2
− 1 +

𝜃1
2

2
≈

1

2
[

𝑅2

(𝑧 + 𝐿)2
−

𝑅2

(𝑧 − 𝐿)2
] 

=
𝑅2

2

𝑧2 − 2𝑧𝐿 + 𝐿2 − 𝑧2 − 2𝑧𝐿 − 𝐿2

(𝑧 + 𝐿)2(𝑧 − 𝐿)2
= −2𝑅2𝐿

𝑧

(𝑧2 − 𝐿2)2
≈ −

2𝑅2𝐿

𝑧3
 

The power dependence is 𝑧−3 

2 bonus points 

 

Typical mistakes: 

2b: Not realizing that the current I should be changed to I*n 

2b: Wrong or incomplete substitution of distances and its ratios with trigonometric 

expressions. 

2c: incorrect shape of the field near the edges - it should decrease smoothly, not be constant 

over the whole solenoid and then start to decrease sharply 

2c: Not realizing that the field goes as 𝑧−3 at large distances, because it can be approximated 

as a magnetic dipole. 

Note by MP: 2a was done correctly by 2/3 of the students but still 1/3 didn’t go it even 

though it was treated at tutorials and was given in the previous year test (as a separate 

exercise). 

2b was designed to be challenging so that the fact that 1/3 of the students did it fully right, is 

very encouraging! 
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2e was done correctly by only 2 students (my compliments!), and 9 more attempted to solve 

it. Of course, it’s a bonus question but I’d like to see the challenge taken by more students! 

 

Problem 3.  Ampère's law (8 points) 

Two infinitely-large parallel surfaces curry uniform non-zero surface currents. Between the 

plates, the magnetic field is 𝐁⃗⃗ ; outside the plates, the magnetic field is zero.  

A. Argue that the surface currents are of the same magnitude and counter-propagating (3 

points) 

B. Find the magnetic force per unit area on one of the plates, expressed only in the magnetic 

field 𝐵 (not 𝐾). Don't forget to indicate a direction in your final answer. (5 points) 

Tip: first find 𝐾 in terms of 𝐵  

 

Answers: Example 5.7 and Problem 5.17 from tutorials modified 

A. Let the surface current run into the 𝑥-direction: 𝐊⃗⃗ = 𝐾 𝐱̂. Then 

the magnetic field of one plate is homogeneous and equal to 

𝐁⃗⃗ = {
+(𝜇0𝐾 2⁄ ) 𝐲̂ for 𝑧 < 0

−(𝜇0𝐾 2⁄ ) 𝐲̂ for 𝑧 > 0
 

To nullify the field outside the planes, the currents should run in the 

opposite directions and be of the same magnitude.  

3 points; -1 point for each incorrect argument 

Students don’t need to derive 𝐁⃗⃗  if they remember it 

B. The magnitude of the magnetic field between the plates 𝐵 = 𝜇0𝐾 so 

𝐾 =
𝐵

𝜇0
 (2 points) 

𝐅 𝑚𝑎𝑔 = ∫(𝐊⃗⃗ × 𝐁⃗⃗ ) 𝑑𝑎 

𝐟 =
𝐅 𝑚𝑎𝑔

𝑑𝑎
= (𝐊⃗⃗ × 𝐁⃗⃗ ) = 𝐾 𝐱̂ × (𝜇0𝐾 2⁄ ) 𝐲̂ =

𝜇0𝐾
2

2
 𝐳̂ 

=
𝜇0(𝐵/𝜇0)

2

2
 𝐳̂ =

𝐵2

2𝜇0
 𝐳̂ 

The force will repel the plates (as it should be for the oppositely-directed currents) 

3 points; -1 point for not indicating / indicating wrongly the direction 

Typical mistakes: 

3a: Simply restating what was to be shown without much elaboration while the question 

specifically asked for “arguing” 

3b: Forgetting the formula for force in terms of K and using magnetization instead (why 

magnetization?) 
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3b: Using a dot product instead of a cross product 

 

Problem 4. Magnetization and bound currents (8 points) 

An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization, parallel to the 

axis, 𝐌⃗⃗⃗  =  𝑘𝑠𝐳̂,where 𝑘 is a constant and 𝑠 is the distance from the axis; there is no free 

current anywhere.  

A. Locate all the bound currents, calculate them and draw them schematically in a 

copy/sketch of the cylinder. Don’t forget about their directions! (4 points) 

B. Find the magnetic field, produced by the magnetization, inside and outside the cylinder (4 

points) 

 

Answers: Problem 6.12; similar was done in the lecture 

𝐀. 𝐉 𝑏 = 𝛁⃗⃗ × 𝐌⃗⃗⃗ = −
𝜕

𝜕𝑠
(𝑘𝑠)𝛗̂ = −𝑘𝛗̂; located inside the cylinder 

𝐊⃗⃗ 𝑏 = 𝐌⃗⃗⃗ × 𝐧̂ = 𝑘𝑅𝐳̂ × 𝐧̂ = 𝑘𝑅𝛗̂; 

located at the surface of the cylinder 

See the figure for their directions 

4 points; -1 point for each incorrect calculation and/or wrong direction 

B. Method 1 

By symmetry, 𝐇⃗⃗  points into the 𝐳̂ direction. Let’s take an amperian loop as shown in the 

figure.  

∮ 𝐇⃗⃗ ∙ 𝑑𝒍 = 𝐼𝑓𝑒𝑛𝑐
= 0 since there is no free current here 𝐇⃗⃗ = 0; 𝐁⃗⃗ = 𝜇0(𝐇⃗⃗ + 𝐌⃗⃗⃗ ) = 𝜇0𝑘𝑠𝐳̂ 

Outside the cylinder, 𝐌⃗⃗⃗ = 0 so 𝐁⃗⃗ = 0 

Method 2 

We notice that the bound currents essentially represent a superposition of solenoids so that 𝐁⃗⃗  

inside is in the 𝐳̂ direction while outside 𝐁⃗⃗ = 0 

∮ 𝐁⃗⃗ ∙ 𝑑𝐥 = 𝜇0𝐼𝑒𝑛𝑐; 𝐵𝑙 = 𝜇0 [∫ 𝐽𝑏𝑑𝑎 + 𝐾𝑏𝑙] = 𝜇0[−𝑘𝑙(𝑅 − 𝑠) + 𝑘𝑅𝑙] = 𝜇0𝑘𝑙𝑠 

𝐁⃗⃗ = 𝜇0𝑘𝑠𝐳̂ 

4 points; -1 point for each incorrect direction; -1 point for not giving the field outside 

 

Typical mistakes: 

In many answers, the surface bound current was proportional to 𝑠, instead of 𝑅. All the 

current should be distributed over the surface where 𝑠 = 𝑅. 

Some experienced difficulties with choosing a proper Amperian loop that would enclose the 

appropriate current. 

 


