Mechanics and Relativity: M3

Mock exam Duration: 120 mins

Before you start, read the following:

- There are 3 problems with subquestions, and you can earn 90 points in total. Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

Possibly relevant equations:

$$\vec{F} = m\vec{a}$$
, $\vec{L} = \vec{r} \times \vec{p}$, $\vec{\tau} = \vec{r} \times \vec{F}$, $\vec{F}_{centr} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$, $\vec{F}_{Cor} = -2m\vec{\omega} \times \vec{v}$, $\vec{F}_{azim} = -m(\frac{d\vec{\omega}}{dt}) \times \vec{r}$, and the Taylor expansion $(1 + ax)^b \approx 1 + abx + \dots$ at small x .

(a) (10 pts) Give one of the equivalent definitions of principal axes; in other words, when is an axis principal?

Question 1: Principal axes

now many p	rincipal axes w.r.	t. this point lie in		heet? Briefly explai	on this arbitrary shap n your answer.
(10 pts) Dra	aw the principal a	axis of a tennis ra	acket in order of as	cending principal m	oments.

Question 2: Spinning chandelier

(a)	(15 pts)	Instead	of a spinnir	ng top,	consider	a spinning	g chandelie	r that	is su	uspended	from	the ceiling	, and
	${\rm makes\ an}$	angle θ w	ith the vert	ical dire	ection. In	nagine it h	as principa	l mome	ents.	$I_1 = I_2 \equiv$	$I < I_3$	3, with the	third
	principal	axis along	g the spinni	ng direc	ction that	t is vertica	l when in i	rest. W	Vhat	is its pred	cession	frequency	Ω in
	terms of i	its spinnir	ng frequency	ω_3 ? Y	ou can u	se that the	precession	ı frequ	ency	Ω for a s	pinnin	g top inste	ead is

$$\Omega = \frac{I_3 \omega_3}{2I \cos(\theta)} \left(1 - \sqrt{1 - \frac{4MIg\ell \cos(\theta)}{I_3^2 \omega_3^2}} \right),\tag{1}$$

and it can help to think about the differences in geometrical configurations of both set-ups (that is, top and chandelier).

(b) (15 pts) Can the chandelier precess (at constant, non-vanishing angle θ) if it does not spin around its x_3 principal axis, that is when ω_3 vanishes? Briefly explain your answer using the no-spinning limit of the precession frequency (if you did not find an answer under a, use the above expression for the spinning top instead). If your answer is yes: give the precession frequency.

your answer is yes: give th	e precession frequency.		

Question 3: Tidal forces

Earth and the mo	on (m_3) . Does the tida	l force point away or	towards the Earth?	
			.: 11	a colorial badies is not
o gravity, with its form of Hooke's la	onsider an imaginary Unstructure $1/r^2$ fall-off, but instead we, with $\vec{F} = -k\vec{r}$. In very based on physical respectively.	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
o gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
co gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
o gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
o gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
to gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br
to gravity, with its form of Hooke's la	s $1/r^2$ fall-off, but instead www. with $\vec{F} = -k\vec{r}$. In v	d the Earth and the lawhich direction does	Moon experience an a the tidal force point	ttractive force that is of in such a Universe? Br