Name: Student Number:

Mechanics and Relativity: M resit

February 15, 2024, Aletta Jacobshal Duration: 120 mins

Before you start, read the following:

- There are 3 problems with subquestions, and you can earn 90 points in total. Your final grade is 1+(points)/10.
- Write your name and student number on all sheets.
- Make clear arguments and derivations and use correct notation. *Derive* means to start from first principles, and show all intermediate (mathematical) steps you used to get to your answer!
- Support your arguments by clear drawings where appropriate.
- Write your answers in the boxes provided. If you need more space, use the lined drafting paper.
- Generally use drafting paper for scratch work. Don't hand this in unless you ran out of space in the answer boxes.
- Write in a readable manner, illegible handwriting will not be graded.

Possibly relevant equations:

$$\vec{F} = m\vec{a}$$
, $K = \frac{1}{2}mv^2$, $V = \frac{1}{2}kx^2$, $I = \int x^2 dm$, $\tau = I\alpha$, $\vec{F}_{\text{Cor}} = -2m\vec{\omega} \times \vec{v}$,

and the Taylor expansions at small x:

$$(1+ax)^b \approx 1 + abx + \dots, \quad \sin(x) \approx x + \dots \quad \cos(x) \approx 1 - \frac{1}{2}x^2 + \dots$$
 (1)

Question 1: Harmonic oscillator

Consider a cart of mass m that can move back and forth on an air rail, such that you can ignore friction in this question. It is attached to a wall via a spring with spring constant k. The resulting oscillation has an eigenfrequency given by $\omega^2 = k/m$.

(a) (10 pts) Show with an explicit calculation that the total energy, consisting of kinetic and potential energy, is constant throughout this motion.

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 ,$$

$$\frac{dE}{dt} = mva + kvx = v(ma + kx) ,$$

which vanishes due to Newton's second law.

Alternative approach: the general motion is $x = A\cos(\omega t + \varphi_0)$, and then one can calculate K and V, which are separately not constant (but instead \cos^2 and \sin^2), but add up to a constant.

(10pts for either of these proofs; partial: 5pts for calculating time derivative of E, or 5pts for calculating explicit expressions of K and T)

(b)	(10 pts) Now add a driving force of the form $F_0 \cos(\omega_d t)$. What is the amplitude of the resulting driven motion for $\omega_d = \frac{1}{2}\omega$? You can ignore the homogeneous solution, and only focus on the particular solution in this case.
	Newton's 2nd law now reads $m\ddot{x} = -kx + F_0 \cos(\omega_d t)$. The particular solution will follow the time-dependence of the driving force, and hence is of the form $x = A\cos(\omega_d t) + B\sin(\omega_d t)$. Plugging this in gives $B = 0$ and
	$-m\omega_d^2 A = -kA + F_0, \to A = \frac{F_0}{m(\omega^2 - \omega_d^2)} = \frac{4F_0}{3m\omega^2}.$ (2)
	(10pts for correct answer. Partial points: 5pts for x in terms of sin and cos with $\omega_d t$ dependence.)

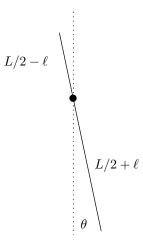
(c) (10 pts) What is the phase difference between the driving force and the driven oscillation when $\omega_d < \omega$? And what is it when $\omega_d > \omega$? Remember that you can ignore friction in this exercise.

There is it which way we recommend that you can issue in the chief office.
The phase difference will be zero (in phase) when the driving frequency is smaller than the eigenfrequency, and
will be π (out of phase) when it is larger.
(5pts for correct answer per regime)

Question 2: Moment of inertia and angular acceleration

Consider a stick of length L, mass M and uniform density $\rho = M/L$ that is fixed by a pivot point at a distance ℓ from its center of mass; as seen from the pivot point, the upper and lower parts therefore have lengths $L/2 \pm \ell$, see the picture. In this exercise you can restrict to planar motion, with only two spatial coordinates and one angle θ with the vertical direction.

Name: Student Number:



(a) (15 pts) Calculate the moment of inertia of the stick with respect to the pivot point.

One approach, using the CM: Around the CM the moment of inertia is given by

$$I_{CM} = 2 \int_0^{L/2} \rho x^2 dx = 2(\frac{1}{3}\rho(\frac{1}{2}L)^3) = \frac{1}{12}ML^2$$
. (3)

The pivot point is a distance ℓ away from this. Using the parallel axes theorem,

$$I = I_{CM} + M\ell^2. (4)$$

Alternatively, one can calculate this answer also by doing the full integral,

$$I = \int_{-L/2+\ell}^{L/2+\ell} \rho x^2 dx \tag{5}$$

(15pts for correct answer; partial points: 5pts for correct formula for I or 5pts for parallel axes relation.)

(b) (15 pts) Calculate the magnitude of the torque due to gravity as a function of ℓ and the angle θ . Moreover, calculate the angular frequency ω (as a function of ℓ and of the moment of inertia I) of the resulting oscillatory motion of the stick under the influence of gravity. You can use the approximation that the angle θ is small.

Gravity acts downwards with a strength $F_g = -Mg$. The horizontal part of the arm has a length $\ell \sin(\theta) \approx \ell \theta$. The torque is therefore $-Mg\ell\theta$. Using $\tau = I\alpha$, we have

$$-Mg\ell\theta = I\ddot{\theta}. \tag{6}$$

This results in oscillations with angular frequency $\omega = \sqrt{Mg\ell/I}$.

(7pts for correct torque (3pts for force, 4pts for correct arm); 8pts for correct angular frequency (4pts for relation between torque τ and angular acceleration $\alpha = \ddot{\theta}$, and 4pts for solving for ω .)

Name: Student Number:

(5pts for correct magnitude, 5pts for correct sketch / description of motion.)

Question 3: Foucault's pendulum

Imagine a pendulum consisting of a heavy mass M hanging from a rope of length L at the North pole. For small oscillations, the time it takes for the pendulum to swing from left to right under the influence of gravity is $T = \pi \sqrt{L/g}$. The pendulum is so long that this takes four minutes. Use coordinates (x, y) for the surface at the North pole.

(a) (10 pts) The Coriolis force causes a small deflection what will make the pendulum precess. Consider a single swing from left to right, along the x direction: $x(t) = -x_0 \cos(\pi t/T)$. During this motion, what is the magnitude of the Coriolis force as a function of time? Sketch the motion that this leads to in the (x, y) plane, as the pendulum swings from left to right.

Magnitude of Coriolis force: $F = 2m\omega v = 2m\omega x_0\pi/T \cdot \sin(\pi t/T)$. Motion: as the pendulum swings from $-x_0$ to x_0 , it starts out at y=0 and moves a bit to negative y (as seen from the pendulum, the Coriolis force acts to the right on the Northern hemisphere).

(b) (20 pts) As the pendulum swings from left to right along the x-axis, what is the velocity and the position (as a function of time) along the y-axis induced by the Coriolis force? How large is the deflection along the y-axis that this leads to during one swing from left to right? By how many degrees has the pendulum precessed during these four minutes? Remember that $\omega = 7 \cdot 10^{-5} \text{ 1/s}$, take x_0 to be 1 m and only calculate to one significant digit.

The force above gives the acceleration in the y-direction:

$$\ddot{y} = -2\omega x_0 \pi / T \cdot \sin(\pi t / T) \,. \tag{7}$$

The velocity comes from integrating once, and is

$$\dot{y} = 2\omega x_0 (\cos(\pi t/T) - 1), \tag{8}$$

with the constant of integration chosen such that it starts out with zero velocity. Then the position is

$$y = 2\omega x_0 (T/\pi \cdot \sin(\pi t/T) - t) \tag{9}$$

This starts at y=0 at the beginning of the swing (as it should), and becomes at the end $y=-2\omega x_0T$. Putting in the numbers gives $y_0=-3$ mm. This corresponds to a precession of $\arctan(0.03/2)\approx 1$ degree. (5pts for correct velocity (3pts for time-dependence, 2pts for integration constant), 5pts for correct position (3pts for time-dependence, 2pts for integration constant), 5pts for numerical value of deflection, 5pts for correct precession angle (also if this is calculated by using the 360 degree rotation in 24hrs))