1 MapReduce

The MapReduce method is designed by google to simplify large-scale distributed
data processing. key features:

e Parallelizes computations across many CPUs

e Automates data distribution and result aggregation

e Eliminates locks by restricting data interaction modes

e Provides a generic interface to hide distribution complexities

The two main problems with large data processing are scalability and relia-
bility (hardware failures are common).
The master-worker model is employed and works like this:

e Master: Initiates computation, creates tasks, launches workers, and col-
lects results

e Worker: Processes tasks, signals completion

e Scalability: Uses multiple work queues and work stealing to avoid bottle-
necks

e Map function: Input is key,value pairs. Output is intermediate key value
pairs

e Reduce function: Input is key value pairs grouped by key. Output is
merged result.

e The total algorithm works like Map - shuffle/sort -; reduce

The algorithm has fault tolerance, where it reexecutes failed or missing tasks.
If the master fails it restarts the task, but this is very rare. It mitigates slow
workers by duplicating tasks near phase completion.

The main bottleneck of the system is that the reduce phase has to wait
for the map phase to complete. The reduce phase must be commutative and
associative, and must have a neutral element (i.e. 0 for summing)

2 Databases

There are several models for the connection between clients and databases:
e Client-Server model: Clients connect directly to a central database server
e Connection pooling: Reusing connections to reduce overhead (JDBC/ODBC)

e Middle-tier Architecture: Application server manages connections and
load balancing



e Shared vs. Dedicated servers: Trade-offs between resource isolation and
scalability

The storage of data within a database can be expressed in a logical structure
and a physical structure. The logical structure consists o:

e Table space: Contains segments, such as tables/indexes
e Segments: Composed of extents: contiguous data blocks:
e Data blocks are the smallest storage unit, i.e. 2KB

The physical structure consists of data files mapped to OS blocks. As best
practices, tablespaces for tables/indexes are separated to optimize file sizing.
Clusters also have different important infrastructure concepts:

e High availability: Consists of Active-Active nodes, where multiple in-
stances access shared storage. There is an automatic switch to standby
nodes in case of crashes.

e Single point of failure is mitigated via redundancy

e Shared-Nothing architecture: Nodes operate independently

The data structure in databases works as follows:

e Tables: Rows and columns stored in segments/extents

e Indexes: Stored on a B-tree: a balanced tree for efficient lookups

e High water mark is used to track used and free space. Free space can be
reclaimed with the SHRINK operation

Indexes speeds up queries but it requires more maintenance.

Partitioning improves performance and manageability by splitting large ta-
bles. Common types are range partitioning, list partitioning(by discrete values),
and hash partitioning. You can also make composites of this.

Sharding spilts data across independent databases/nodes. There is horizon-
tal sharding, where you have the same database schema on both nodes but with
different data, or there is vertical sharding where different nodes store different
types of data. Sharding is better for linear scalability and fault isolation, but
backups become more complex and cross-shard queries aswell.

The CAP theorem states there is always a trade off between consistency
(all nodes get the same data), availability (every request gets a response) and
partition tolerance (System works despite network failures).

NoSQL databases are a special type of database. The two most common are
Cassandra and MongoDB. Cassandras properties are:

e Ring Architecture: Peer-to-peer nodes; no master.

e Write Path: Memtable — SSTable — Disk (lazy writes)



e Read Path: Checks memtable/SSTable first; prioritizes local/rack data.
e Replication: Tunable consistency (e.g., quorum reads/writes).

e Virtual Nodes (vnodes): Automatic data distribution (default: 256 /node).
MongoDBs characteristics are:

e Document Model: BSON/JSON-like documents with dynamic schemas.
e Atomicity: Single-document transactions.

e Replication: Primary-secondary nodes with automatic failover.

e Change Streams: Real-time data change notifications.

SQL and NoSQL usually get compared via ACID vs BASE:

e ACID (SQL): Atomicity, Consistency, Isolation, Durability.

— Atomicity: All operations in a transaction succeed or fail together.
— Consistency: Data remains valid per defined rules.

— Isolation: Concurrent transactions do not interfere (e.g., row/table
locks).

— Durability: Committed data survives failures.

There are exclusive locks for write operations and share locks for read op-
erations. Deadlock occurs when transactions wait cyclically for resources;
resolved via rollback.

e BASE (NoSQL): Basic Availability, Soft state, Eventual consistency.

— Basic Availability: System remains operational during partial fail-
ures.

— Soft State: Replicas may temporarily diverge.

— Eventual Consistency: Data converges to consistency over time (e.g.,
Cassandra’s tunable consistency).

3 Infrastructure as Code

The goals from [aC are:
e Reproducibility: Create identical environments consistently.

e Ephemerality & Immutability: Treat infrastructure as disposable; replace
rather than modify.

e Transparency: Version-controlled, auditable configurations.

e Automation: Integrate infrastructure into CI/CD pipelines.



e Scalability: Manage large-scale deployments efficiently.
The core features of 1aC are:

o Declarative Code: Define what infrastructure should exist (not how to
create it).

e Version Control: Track changes using Git (e.g., GitHub, GitLab).
e Continuous Integration/Deployment (CI/CD)

There are thus many different parts and tools to IaC:

e Application-Level: NPM, pip, NuGet (dependency management).
e Containers: Docker (Dockerfile, Docker Compose).

e Orchestration: Kubernetes (Helm, Kustomize, ArgoCD), Rancher, k3s.
e Configuration Management: Ansible, Chef, Puppet.

e Virtual Machines: Vagrant.

e OS-Level: CoreOS, Flatcar, k30S.

e Infrastructure Provisioning: Terraform, AWS CloudFormation.
There are a couple challenges to IaC:

e Ephemeral vs. Stateful: TaC promotes statelessness, but most apps re-
quire state (e.g., databases). Solutions: External storage (S3, databases),
backup strategies.

e State management: Terraform tracks state to detect drift (differences be-
tween desired and actual infrastructure). Backends: Store state remotely
(e.g., Terraform Cloud, GitLab) to enable team collaboration.

4 Big Data Processing

There are a couple of different choices for processing data:

e HDFS/Data Lake: Immutable, append-only storage for bulk CPU-intensive
processing.

e Lambda Architecture: Consists of a batch layer (HDFS version to process
historical data), a speed layer (Handles real time streams with low latency)
and a serving layer (merges results for queries)

e Kappa Architecture: Simplifies Lambda by using a single stream-processing
pipeline (e.g., Kafka queues for raw, preprocessed, and analytics data).



There are 2 main types of streaming: Microbatching and True streaming.
Microbatching processes streams as discrete RDD batches, which is usually sim-
pler to integrate but has more latency. True streaming processes each result
individually.

Declarative infrastructure such as Kubernetes uses operators, which are cus-
tom controllers, via custom resource definitions. They use a control loop: ob-
serve -j analyze -j act.

The BSP model can be used to scale iterative algorithms, using the overar-
ching steps: Compute, synchronize, repeat. Vertices thus compute in parallel
and exchange messages, and aggregators reduce the network traffic (think of
sum/max)

5 Data Processing Architecture Weaknesses and
Fail Points
Cassandra:

e Architecture: Distributed, masterless nodes with data partitioned by hash
(virtual nodes/vnodes).

e Write process:

— Data written to commitlog (disk).
— Sent to responsible node (hash-based).
— Stored in memtable (memory) — sstable (sorted string table) — disk.

— Temporary nodes handle writes if primary nodes fail.

e Read Process: Parallel reads across nodes; prioritizes local — rack — data
center — remote data.

e Replication: Tunable replication factor (e.g., RF=3 for fault tolerance).

e Can have both strong consistency and eventual consistency. Higher con-
sistency reduces availability (CAP theorem)

e Gossip Protocol: Nodes exchange state information to maintain cluster
awareness.

MongoDB:

e Document Model: BSON/JSON-like documents with embedded fields (de-
normalized) or references (normalized).

e Atomicity: Single-document operations are atomic; multi-document trans-
actions require careful design

e Scalability: Sharding (horizontal partitioning) and replication (high avail-
ability).



e Change Streams: Real-time data change subscriptions.
Common database pitfalls:
e Connection Management: Frequent connect/disconnect operations are costly.

e Bind Variables: Avoid hardcoded SQL (security/performance risks); use
parameterized queries.

Bulk Operations: Commit per transaction, not per row.
e Cursor Overuse: Multiple cursors for similar queries waste memory.
e Lock Contention: Poor isolation levels or long transactions block resources.

To have a processing infrastructure be scalable, we occupy ourselves with
the following components:

e Firewall/Proxy: Manages traffic and load balancing.

e Processing Sites: Stateless services with local cache databases (e.g., Redis,
MongoDB) to reduce latency.

Metadata Database: Tracks data lineage and state

e Data Warehouse: Centralized storage for analytics.

Storage Sites: Distributed storage (e.g., S3, HDFS).

The main performance factors are I/O Bottlenecks, caching and DNS/Proxy
Servers: Critical for routing and failover.

6 CEPH deep dive

The purpose of CEPH is to have a large-scale, distributed storage system de-
signed to handle massive amounts of data (petabytes to exabytes) with high
reliability, scalability, and performance. Its key features are self-healing, thus
it automatically recovers from failures. It must be autonomous, thus have no
single point of failure, and it must be scalable thus add nodes seamlessly. Its
components are the following:

e RADOS (Reliable Autonomic Distributed Object Store): Core storage
layer managing data distribution and replication.

LIBRADOS: Library for direct RADOS access (C/C++, Python, etc.).

RADOSGW: RESTful gateway compatible with S3/Swift APIs.

RBD (RADOS Block Device): Distributed block storage for VMs/disks.

CephF'S: POSIX-compliant distributed file system.



CEPH prioritizes consistency over availability over performance.

The CRUSH algorithm is a decentralized, deterministic data placement al-
gorithm. It uses pseudorandomness to ensure a uniform distribution without
central coordination. The data placement are based on configurable rules. Its
key procedures are:

e TAKE(a): Adds item a to a working list.
e SELECT(n, t): Chooses n items of type t (e.g., disks, cabinets).
e EMIT: Finalizes placement.

The advantages are that it is decentralized and thus does not have a single
bottleneck, and that it is self-managing thus has automatic recovery and rebal-
ancing. This rebalancing does trigger overhead due to data movement. And
naturally we have to deal with the CAP theorem.



